Fourier transform Heaviside step function

Math 

The definition of Heaviside step function is :link::

θ(x)={0x<012x=01x>0\theta(x)= \begin{cases}0 & x<0 \\ \frac{1}{2} & x=0 \\ 1 & x>0\end{cases}

It can be written as (If we substitute $x$ with $t-t’$ as we’ll be using them in time ordering operator):

θ(tt)=12πilimη0+dωeiω(tt)ω+iη(1)\theta\left(t-t^{\prime}\right)=-\frac{1}{2 \pi i} \lim_{\eta \rightarrow 0^+}\int_{-\infty}^{\infty} d \omega \frac{e^{-i \omega (t-t^{\prime})}}{\omega+i \eta} \tag{1}

To show this relation is correct, we need to use the :link: The Sokhotski-Plemelj formula:

limϵ0f(x)dxx±iϵ=Pf(x)dxxiπf(0)\lim _{\epsilon \rightarrow 0} \int_{-\infty}^{\infty} \frac{f(x) d x}{x \pm i \epsilon}=\mathcal{P} \int_{-\infty}^{\infty} \frac{f(x) d x}{x} \mp i \pi f(0)

and Eq. 1 turns into:

θ(tt)=12πilimη0+dxeix(tt)x+iη=12πi[Peix(tt)dxxiπ](2)\begin{aligned} \theta\left(t-t^{\prime}\right)&=-\frac{1}{2 \pi i} \lim_{\eta \rightarrow 0^+}\int_{-\infty}^{\infty} d x \frac{e^{-i x\left(t-t^{\prime}\right)}}{x+i \eta}\\ &= -\frac{1}{2 \pi i} \left [ \mathcal{P} \int_{-\infty}^{\infty} \frac{ e^{-i x (t-t^{\prime})} d x}{x} - i \pi \right] \end{aligned} \tag{2}

expanding the tems inside the braket:

Peix(tt)dxxiπ=limδ0{δeix(tt)dxx+δeix(tt)dxx}iπ=limδ0{δcos[x(tt)]isin[x(tt)]xdx+δcos[x(tt)]isin[x(tt)]xdx}iπ\begin{aligned} & \mathcal{P} \int_{-\infty}^{\infty} \frac{ e^{-i x (t-t^{\prime})} d x}{x} - i \pi \\ =& \lim_{\delta \rightarrow 0} \left \{ \int_{-\infty}^{-\delta} \frac{ e^{-i x (t-t^{\prime})} d x}{x} + \int_{\delta}^{\infty} \frac{ e^{-i x (t-t^{\prime})} d x}{x}\right \} -i \pi \\ =& \lim_{\delta \rightarrow 0} \left \{ \int_{-\infty}^{-\delta} \frac{ \cos[x (t-t^{\prime})] - i \sin[x (t-t^{\prime})]}{x}dx + \int_{\delta}^{\infty} \frac{ \cos[x (t-t^{\prime})] - i \sin[x (t-t^{\prime})]}{x}dx \right \} -i\pi\\ \end{aligned}

Becasue $\cos$ is odd, two $\cos$ within the first and second integral vanishes, and in the limit of $\delta \rightarrow 0$ we can combine the $\sin$ terms, giving us:

Peix(tt)dxxiπ=isin[x(tt)]xdxiπ(3)\begin{aligned} & \mathcal{P} \int_{-\infty}^{\infty} \frac{ e^{-i x (t-t^{\prime})} d x}{x} - i \pi \\ =&- i \int_{-\infty}^{\infty} \frac{ \sin[x (t-t^{\prime})]}{x}dx -i \pi \\ \end{aligned} \tag{3}

Note that the integral can be re-written as:

sin[x(tt)]xdx=Si(x[tt)]x=x==0x(tt)sin(ω)ωdωx=x=\int_{-\infty}^{\infty} \frac{ \sin[x (t-t^{\prime})]}{x}dx = \mathrm{Si} (x[t-t^{\prime})] \big \vert_{x=-\infty}^{x=\infty} = \int_{0}^{x(t-t^{\prime})} \frac{ \sin(\omega)}{\omega} d\omega \big \vert_{x=-\infty}^{x=\infty}

where $\mathrm{Si}$ is the sine integral.

Assuming we have $t-t’ > 0$ we have:

sin[x(tt)]xdx=0x(tt)sin(ω)ωdωx=x==π\int_{-\infty}^{\infty} \frac{ \sin[x (t-t^{\prime})]}{x}dx =\int_{0}^{x(t-t^{\prime})} \frac{ \sin(\omega)}{\omega} d\omega \big \vert_{x=-\infty}^{x=\infty} = \pi

So that Eq. 3 is:

Peix(tt)dxxiπ=0(4)\mathcal{P} \int_{-\infty}^{\infty} \frac{ e^{-i x (t-t^{\prime})} d x}{x} - i \pi = 0 \tag{4}

and if $t-t’ < 0$ we have:

sin[x(tt)]xdx=0x(tt)sin(ω)ωdωx=x==π\int_{-\infty}^{\infty} \frac{ \sin[x (t-t^{\prime})]}{x}dx =\int_{0}^{x(t-t^{\prime})} \frac{ \sin(\omega)}{\omega} d\omega \big \vert_{x=-\infty}^{x=\infty} =- \pi

So that Eq. 3 is:

Peix(tt)dxxiπ=2iπ(5)\mathcal{P} \int_{-\infty}^{\infty} \frac{ e^{-i x (t-t^{\prime})} d x}{x} - i \pi = -2i\pi \tag{5}

and if $t-t’ = 0$ we have:

sin[x(tt)]xdx=0x(tt)sin(ω)ωdωx=x==0\int_{-\infty}^{\infty} \frac{ \sin[x (t-t^{\prime})]}{x}dx =\int_{0}^{x(t-t^{\prime})} \frac{ \sin(\omega)}{\omega} d\omega \big \vert_{x=-\infty}^{x=\infty} = 0

So that Eq. 3 is:

Peix(tt)dxxiπ=iπ(6)\mathcal{P} \int_{-\infty}^{\infty} \frac{ e^{-i x (t-t^{\prime})} d x}{x} - i \pi = -i\pi \tag{6}

Multiply Eq. 4, 5 and 6 with $\frac{-1}{i 2 \pi}$ gives Eq. 2:

θ(tt)={0tt<012tt=01tt>0\theta(t-t')= \begin{cases}0 & t-t'<0 \\ \frac{1}{2} & t-t'=0 \\ 1 & t-t'>0\end{cases}


Author | Chengcheng Xiao

Currently a postdoctoral research associate at Imperial College London. Predicting electron behaviour since 2016.