Polarizability from quantum TD-LRT

DFT,  Math 

Previously we have shown how :link:quantum TD-LRT works, now let’s put that into work by calculating the polarizability of a quantum system. Here we start by considering the dipole-electric field interaction energy

V^(t)=d^E(t)=er^E(t)(1)\hat{V}(t) = -\mathbf{\hat d} \cdot \mathbf{E}(t) = e\mathbf{\hat r} \cdot \mathbf{E}(t) \tag{1}

where the external electric field is still

E(t)=E0eiωt+E0e+iωt.\mathbf{E}(t) = \mathbf{E}_0 e^{-i\omega t} + \mathbf{E}_0^* e^{+i\omega t}.

Substituting Eq. 1 into Eq. 3 of :link:quantum TD-LRT, we get:

c˙n(t)=1imcm(t)eiωnmtλnd^mE(t)\dot{c}_n(t) = \frac{-1}{i\hbar}\sum_m c_m(t) e^{i\omega_{nm}t} \lambda \braket{n|\mathbf{\hat d}|m} \cdot \mathbf{E}(t)

Again, if we initialize system to $\ket{0}$ at $t_0=-\infty$ (see Eq. 6 in :link:quantum TD-LRT ). From now assuming $n\neq 0$, to first order, we have

c˙n(t)=1ieiωn0tnd^0E(t)\dot{c}_n(t) = \frac{-1}{i\hbar} e^{i\omega_{n0}t} \braket{n|\mathbf{\hat d}|0} \cdot \mathbf{E}(t)

Explicitly

c˙n(t)=1ieiωn0tnd^0E(t)=1ieiωn0tnd^0(E0eiωt+E0e+iωt)=ieiωn0tnd^0E0eiωt+ieiωn0tnd^0E0e+iωt=F(t)+F+(t)(2)\begin{aligned} \dot{c}_n(t) &= \frac{-1}{i\hbar} e^{i\omega_{n0}t} \braket{n|\mathbf{\hat d}|0} \cdot \mathbf{E}(t)\\ &=\frac{-1}{i\hbar} e^{i\omega_{n0}t} \braket{n|\mathbf{\hat d}|0} \cdot \left( \mathbf{E}_0e^{-i\omega t} + \mathbf{E}_0^*e^{+i\omega t}\right)\\ &=\frac{i}{\hbar} e^{i\omega_{n0}t} \braket{n|\mathbf{\hat d}|0} \cdot \mathbf{E}_0e^{-i\omega t} + \frac{i}{\hbar} e^{i\omega_{n0}t} \braket{n|\mathbf{\hat d}|0} \cdot \mathbf{E}_0^*e^{+i\omega t}\\ &=F_{-}(t) + F_{+}(t) \tag{2} \end{aligned}

Note: Time ordering

$e^{\mu t'}$ is a damping factor added to the E-field so that we have perturbation adiabatically turned on in the remote past, and the integration converges as $t_0 \to -\infty$. For more, see [this post](https://chengcheng-xiao.github.io/post/2021/08/16/Greens_function_2.html).

Now we want to get $c_n(t)$, for that we need to integrate c˙n(t)\dot{c}_n(t). Here we assume the field was adiabatically turned on in the remote past $t_0=-\infty$ by multiplying the E-field by $e^{\mu t’}$ with $\mu \to 0^+$(or equivalently by adding a small positive imaginary part to the frequency). Then integrate from $t’=-\infty$ to $t’=t$, for $F_{-}(t)$ (similar to Eq. 6 in :link:quantum TD-LRT) we get

tF(t)dt=ind^0E0te[i(ωn0ω)+μ]tdt=ind^0E0ei[(ωn0ω)+μ]ti(ωn0ω)+μ\begin{aligned} \int_{-\infty}^t F_{-}(t') dt' &= \frac{i}{\hbar} \braket{n|\mathbf{\hat d}|0} \cdot \mathbf{E}_0 \int_{-\infty}^t e^{[i(\omega_{n0}-\omega)+\mu] t'} dt'\\ &=\frac{i}{\hbar} \braket{n|\mathbf{\hat d}|0} \cdot \mathbf{E}_0 \frac{e^{i[(\omega_{n0}-\omega)+\mu] t}}{i(\omega_{n0}-\omega)+\mu} \end{aligned}

Similarily, for $F_+(t)$

tF+(t)dt=ind^0E0e[i(ωn0ω)+μ]ti(ωn0+ω)+μ\begin{aligned} \int_{-\infty}^t F_{+}(t') dt' = \frac{i}{\hbar} \braket{n|\mathbf{\hat d}|0} \cdot \mathbf{E}^*_0 \frac{e^{[i(\omega_{n0}-\omega)+\mu] t}}{i(\omega_{n0}+\omega)+\mu} \end{aligned}

Combining

cn(t)=ind^0(E0e[i(ωn0ω)+μ]ti(ωn0ω)+μ+E0e[i(ωn0+ω)+μ]ti(ωn0+ω)+μ)=ind^0(E0ei(ωn0ω)ti(ωn0ω)+0++E0ei(ωn0+ω)ti(ωn0+ω)+0+)(3)\begin{aligned} {c}_n(t) &= \frac{i}{\hbar} \braket{n|\mathbf{\hat d}|0} \left( \mathbf{E}_0 \frac{e^{[i(\omega_{n0}-\omega)+\mu] t}}{i(\omega_{n0}-\omega)+\mu}+ \mathbf{E}^*_0 \frac{e^{[i(\omega_{n0}+\omega)+\mu] t}}{i(\omega_{n0}+\omega)+\mu} \right)\\ &=\frac{i}{\hbar} \braket{n|\mathbf{\hat d}|0} \left( \mathbf{E}_0 \frac{e^{i(\omega_{n0}-\omega) t}}{i(\omega_{n0}-\omega)+0^+}+ \mathbf{E}^*_0 \frac{e^{i(\omega_{n0}+\omega) t}}{i(\omega_{n0}+\omega)+0^+} \right)\\ \end{aligned} \tag{3}

where we have gotten rid of $e^{it0^+}=0$. Eq. 3 shows how the wavefunction evolves (to the first order) under a small perturbation of an external E-field - dipole interaction.

We can now calculate the expectation of the dipole operator. First remember that we have the system prepared in $\ket{0}$ ($c_0(t) \approx 1$) so that

ψ(t)=c0(t)eiω0t0+m0cm(t)eiωmtmeiω0t0+m0cm(t)eiωmtm\begin{aligned} \ket{\psi(t)} &= c_0(t) e^{-i\omega_0t} \ket{0} + \sum_{m\neq 0} c_m(t) e^{-i\omega_mt} \ket{m} \\ &\approx e^{-i\omega_0t} \ket{0} + \sum_{m\neq 0} c_m(t) e^{-i\omega_mt} \ket{m} \end{aligned}

The expectation of the dipole operator becomes

d^(t)=ψd^Ψ=m,mcm(t)cm(t)ei(ωmωm)tmd^m=c0(t)c0(t)0d^0+m0(cm(t)c0(t)ei(ωmω0)tmd^0+c0(t)cm(t)ei(ω0ωm)t0d^m)+m0,m0cm(t)cm(t)ei(ωmωm)tmd^m0d^0+m0(cm(t)ei(ωmω0)tmd^0+cm(t)ei(ω0ωm)t0d^m)+m0,m0cm(t)cm(t)ei(ωmωm)tmd^m\begin{aligned} \braket{\mathbf{\hat d}}(t) &= \braket{\psi|\mathbf{\hat d}|\Psi}\\ &=\sum_{m,m'} c^*_m(t) c_{m'}(t) e^{i(\omega_m-\omega_{m'})t} \braket{m|\mathbf{\hat d}|m' }\\ &= c^*_0(t) c_{0}(t) \braket{0|\mathbf{\hat d}|0 }\\ &+ \sum_{m\neq0} \left( c^*_m(t) c_0(t) e^{i(\omega_m-\omega_{0})t} \braket{m|\mathbf{\hat d}|0}+ c^*_0(t) c_m(t) e^{i(\omega_0-\omega_{m})t} \braket{0|\mathbf{\hat d}|m} \right)\\ &+ \sum_{m\neq0,m'\neq0} c^*_m(t) c_{m'}(t) e^{i(\omega_m-\omega_{m'})t} \braket{m|\mathbf{\hat d}|m' }\\ &\approx \braket{0|\mathbf{\hat d}|0 }\\ &+ \sum_{m\neq0} \left( c^*_m(t) e^{i(\omega_m-\omega_{0})t} \braket{m|\mathbf{\hat d}|0}+ c_m(t) e^{i(\omega_0-\omega_{m})t} \braket{0|\mathbf{\hat d}|m} \right)\\ &+ \sum_{m\neq0,m'\neq0} c^*_m(t) c_{m'}(t) e^{i(\omega_m-\omega_{m'})t} \braket{m|\mathbf{\hat d}|m' }\\ \end{aligned}

We see there are zero-th, first, and second order terms involving $c$ coeffs. The zero-th order term - c0(t)c0(t)0d^0c^*_0(t) c_{0}(t) \braket{0|\mathbf{\hat d}|0 } is a constant and does not affect the polarizability so we can safely ignore it, and if we ignore the second order term (because it is small), only focusing on the first order term, the dipole expectation value becomes

d^(t)m0(cm(t)ei(ωmω0)tmd^0+cm(t)ei(ω0ωm)t0d^m)=m0(cm(t)eiωm0tmd^0+cm(t)eiω0mt0d^m)(4)\begin{aligned} \braket{\mathbf{\hat d}}(t) &\approx \sum_{m\neq0} \left( c^*_m(t) e^{i(\omega_m-\omega_{0})t} \braket{m|\mathbf{\hat d}|0}+ c_m(t) e^{i(\omega_0-\omega_{m})t} \braket{0|\mathbf{\hat d}|m} \right) \\ &= \sum_{m\neq0} \left( c^*_m(t) e^{i\omega_{m0}t} \braket{m|\mathbf{\hat d}|0}+ c_m(t) e^{i\omega_{0m}t} \braket{0|\mathbf{\hat d}|m} \right) \end{aligned}\tag{4}

substituting Eq. 3 into Eq. 4, we get

d^(t)m0[i0d^m(E0ei(ωn0ω)ti(ωm0ω)+0++E0ei(ωm0+ω)ti(ωm0+ω)+0+)eiωm0tmd^0]+m0[imd^0(E0ei(ωm0ω)ti(ωm0ω)+0++E0ei(ωm0+ω)ti(ωm0+ω)+0+)eiω0mt0d^m]=m0[10d^m(E0ei(ωn0ω)tωm0ω+i0++E0ei(ωm0+ω)tωm0+ω+i0+)eiωm0tmd^0]+m0[1md^0(E0ei(ωm0ω)tωm0ωi0++E0ei(ωm0+ω)tωm0+ωi0+)eiω0mt0d^m](5)\begin{aligned} \braket{\mathbf{\hat d}}(t) &\approx \sum_{m\neq0} \left[ \frac{-i}{\hbar} \braket{0|\mathbf{\hat d}|m} \left( \mathbf{E}^*_0 \frac{e^{-i(\omega_{n0}-\omega) t}}{-i(\omega_{m0}-\omega)+0^+}+ \mathbf{E}_0 \frac{e^{-i(\omega_{m0}+\omega) t}}{-i(\omega_{m0}+\omega)+0^+} \right) e^{i\omega_{m0}t} \braket{m|\mathbf{\hat d}|0}\right]\\ &+\sum_{m\neq0} \left[ \frac{i}{\hbar} \braket{m|\mathbf{\hat d}|0} \left( \mathbf{E}^*_0 \frac{e^{i(\omega_{m0}-\omega) t}}{i(\omega_{m0}-\omega)+0^+}+ \mathbf{E}_0 \frac{e^{i(\omega_{m0}+\omega) t}}{i(\omega_{m0}+\omega)+0^+} \right) e^{i\omega_{0m}t} \braket{0|\mathbf{\hat d}|m}\right]\\ &= \sum_{m\neq0} \left[ \frac{1}{\hbar} \braket{0|\mathbf{\hat d}|m} \left( \mathbf{E}^*_0 \frac{e^{-i(\omega_{n0}-\omega) t}}{\omega_{m0}-\omega+i0^+}+ \mathbf{E}_0 \frac{e^{-i(\omega_{m0}+\omega) t}}{\omega_{m0}+\omega+i0^+} \right) e^{i\omega_{m0}t} \braket{m|\mathbf{\hat d}|0}\right]\\ &+\sum_{m\neq0} \left[ \frac{1}{\hbar} \braket{m|\mathbf{\hat d}|0} \left( \mathbf{E}_0 \frac{e^{i(\omega_{m0}-\omega) t}}{\omega_{m0}-\omega-i0^+}+ \mathbf{E}^*_0 \frac{e^{i(\omega_{m0}+\omega) t}}{\omega_{m0}+\omega-i0^+} \right) e^{i\omega_{0m}t} \braket{0|\mathbf{\hat d}|m}\right] \end{aligned} \tag{5}

Note: electric field definition

We use $e^{i\omega t}$ and $e^{-i\omega t}$ to construct $\cos$. So here simply taking terms related to $e^{i\omega t}$ should give us the polarizability.

Taking only terms that contains $e^{-i\omega t}$ from Eq. 5

d^(t)1m0[0d^m(E0ei(ωm0+ω)tωm0+ω+i0+)eiωm0tmd^0]+1m0[md^0(E0ei(ωm0ω)tωm0ωi0++)eiω0mt0d^m]=1m0[0d^mmd^0(eiωm0teiωm0tωm0+ω+i0+)]E0eiωt+1m0[md^00d^m(eiωm0teiω0mtωm0ωi0+)]E0eiωt=1m0(0d^mmd^0ωm0+ω+i0++md^00d^mωm0ωi0+)E0eiωt(5.1)\begin{aligned} \braket{\mathbf{\hat d}}(t) &\approx \frac{1}{\hbar} \sum_{m\neq0} \left[ \braket{0|\mathbf{\hat d}|m} \left( \mathbf{E}_0 \frac{e^{-i(\omega_{m0}+\omega) t}}{\omega_{m0}+\omega+i0^+} \right) e^{i\omega_{m0}t} \braket{m|\mathbf{\hat d}|0}\right]\\ &+\frac{1}{\hbar}\sum_{m\neq0} \left[ \braket{m|\mathbf{\hat d}|0} \left( \mathbf{E}_0 \frac{e^{i(\omega_{m0}-\omega) t}}{\omega_{m0}-\omega-i0^+}+ \right) e^{i\omega_{0m}t} \braket{0|\mathbf{\hat d}|m}\right]\\ &=\frac{1}{\hbar} \sum_{m\neq0} \left[ \braket{0|\mathbf{\hat d}|m} \braket{m|\mathbf{\hat d}|0} \left( \frac{e^{-i\omega_{m0} t}e^{i\omega_{m0}t}}{\omega_{m0}+\omega+i0^+} \right) \right]\mathbf{E}_0e^{-i\omega t} \\ &+\frac{1}{\hbar}\sum_{m\neq0} \left[ \braket{m|\mathbf{\hat d}|0} \braket{0|\mathbf{\hat d}|m} \left( \frac{e^{i\omega_{m0} t}e^{i\omega_{0m}t}}{\omega_{m0}-\omega-i0^+} \right) \right]\mathbf{E}_0e^{-i\omega t}\\ &=\frac{1}{\hbar} \sum_{m\neq0} \left( \frac{\braket{0|\mathbf{\hat d}|m} \braket{m|\mathbf{\hat d}|0}}{\omega_{m0}+\omega+i0^+} +\frac{\braket{m|\mathbf{\hat d}|0} \braket{0|\mathbf{\hat d}|m}}{\omega_{m0}-\omega-i0^+} \right) \mathbf{E}_0e^{-i\omega t} \tag{5.1} \end{aligned}

According to Maxwell’s equations, an external field we have

P(t)=d(t)V=ε0α(ω)E(t,ω)\mathbf{P} (t) = \frac{\mathbf{d}(t)}{V} = \varepsilon_0 \boldsymbol{\alpha}(\omega) \mathbf{E}(t,\omega)

so

d(t)=Vε0α(ω)E(t,ω)(5.2)\mathbf{d}(t) = V\varepsilon_0\boldsymbol{\alpha}(\omega)\mathbf{E(t,\omega)} \tag{5.2}

Comparing Eq. 5.1 to Eq. 5.2, we see that

Vε0α(ω)=1m0(0d^mmd^0ωm0+ω+i0++md^00d^mωm0ωi0+)\begin{aligned} V\varepsilon_0\boldsymbol{\alpha}(\omega) &= \frac{1}{\hbar} \sum_{m\neq0} \left( \frac{\braket{0|\mathbf{\hat d}|m} \braket{m|\mathbf{\hat d}|0}}{\omega_{m0}+\omega+i0^+} +\frac{\braket{m|\mathbf{\hat d}|0} \braket{0|\mathbf{\hat d}|m}}{\omega_{m0}-\omega-i0^+} \right)\\ \end{aligned}

Now replacing $i0^+$ with phenomenological damping factor $i\Gamma_m/2$ of mode $m$,

Vε0α(ω)=1m0(0d^mmd^0ωm0+ω+Γm/2+md^00d^mωm0ωiΓm/2)=1m0(0d^mmd^0(ωm0ωiΓm/2)(ωm0+ω+Γm/2)(ωm0ωiΓm/2)+md^00d^m(ωm0+ω+Γm/2)(ωm0+ω+Γm/2)(ωm0ωiΓm/2))=1m0(0d^mmd^0ωm0ωm02ω2iΓmωΓm2/4+md^00d^mωm0ωm02ω2iΓmωΓm2/4)\begin{aligned} V\varepsilon_0\boldsymbol{\alpha}(\omega) &= \frac{1}{\hbar} \sum_{m\neq0} \left( \frac{\braket{0|\mathbf{\hat d}|m} \braket{m|\mathbf{\hat d}|0}}{\omega_{m0}+\omega+\Gamma_m/2} +\frac{\braket{m|\mathbf{\hat d}|0} \braket{0|\mathbf{\hat d}|m}}{\omega_{m0}-\omega-i\Gamma_m/2} \right)\\ &= \frac{1}{\hbar} \sum_{m\neq0} \left( \frac{\braket{0|\mathbf{\hat d}|m} \braket{m|\mathbf{\hat d}|0} (\omega_{m0}-\omega-i\Gamma_m/2)}{(\omega_{m0}+\omega+\Gamma_m/2)(\omega_{m0}-\omega-i\Gamma_m/2)} +\frac{\braket{m|\mathbf{\hat d}|0} \braket{0|\mathbf{\hat d}|m}(\omega_{m0}+\omega+\Gamma_m/2)} {(\omega_{m0}+\omega+\Gamma_m/2)(\omega_{m0}-\omega-i\Gamma_m/2)} \right)\\ &= \frac{1}{\hbar} \sum_{m\neq0} \left( \frac{\braket{0|\mathbf{\hat d}|m} \braket{m|\mathbf{\hat d}|0} \omega_{m0}}{\omega_{m0}^2-\omega^2-i\Gamma_m\omega - \Gamma_m^2/4} + \frac{\braket{m|\mathbf{\hat d}|0} \braket{0|\mathbf{\hat d}|m} \omega_{m0}}{\omega_{m0}^2-\omega^2-i\Gamma_m\omega - \Gamma_m^2/4} \right)\\ \end{aligned}

and we can now calculate the polarizability tensor $\boldsymbol{\alpha}$

α(ω)=1V1ε01m0(0d^mmd^0ωm0ωm02ω2iΓmωΓm2/4+md^00d^mωm0ωm02ω2iΓmωΓm2/4)\begin{aligned} \boldsymbol{\alpha}(\omega) &= \frac{1}{V}\frac{1}{\varepsilon_0}\frac{1}{\hbar} \sum_{m\neq0} \left( \frac{\braket{0|\mathbf{\hat d}|m} \braket{m|\mathbf{\hat d}|0} \omega_{m0}}{\omega_{m0}^2-\omega^2-i\Gamma_m\omega - \Gamma_m^2/4} + \frac{\braket{m|\mathbf{\hat d}|0} \braket{0|\mathbf{\hat d}|m} \omega_{m0}}{\omega_{m0}^2-\omega^2-i\Gamma_m\omega - \Gamma_m^2/4} \right)\\ \end{aligned}

α\boldsymbol{\alpha} is a 3 by 3 rank-2 tensor, because md^0\braket{m\vert \mathbf{\hat{d}}\vert 0} comes from md^0E0\braket{m\vert \mathbf{\hat d}\vert 0}\mathbf{E}_0, 0d^m\braket{0\vert \mathbf{\hat d}\vert m} can lie in a different direction, and the components of α\boldsymbol{\alpha} become:

αij(ω)=1V1ε01m0(0d^immd^j0ωm0ωm02ω2iΓmωΓm2/4+md^j00d^imωm0ωm02ω2iΓmωΓm2/4)\begin{aligned} {\alpha}_{ij}(\omega) &= \frac{1}{V}\frac{1}{\varepsilon_0}\frac{1}{\hbar} \sum_{m\neq0} \left( \frac{\braket{0|\mathbf{\hat d}_i|m} \braket{m|\mathbf{\hat d}_j|0} \omega_{m0}}{\omega_{m0}^2-\omega^2-i\Gamma_m\omega - \Gamma_m^2/4} + \frac{\braket{m|\mathbf{\hat d}_j|0} \braket{0|\mathbf{\hat d}_i|m} \omega_{m0}}{\omega_{m0}^2-\omega^2-i\Gamma_m\omega - \Gamma_m^2/4} \right)\\ \end{aligned}

Using number density $N = 1/V$ which gives the number of this dipole moments in side a unit volume, and ignoring the second order term $- \Gamma_m^2/4$ since dampening is small, we have

αij(ω)=1V1ε01m0(0d^immd^j0ωm0ωm02ω2iΓmω+md^j00d^imωm0ωm02ω2iΓmω)\begin{aligned} {\alpha}_{ij}(\omega) &= \frac{1}{V}\frac{1}{\varepsilon_0}\frac{1}{\hbar} \sum_{m\neq0} \left( \frac{\braket{0|\mathbf{\hat d}_i|m} \braket{m|\mathbf{\hat d}_j|0} \omega_{m0}}{\omega_{m0}^2-\omega^2-i\Gamma_m\omega } + \frac{\braket{m|\mathbf{\hat d}_j|0} \braket{0|\mathbf{\hat d}_i|m} \omega_{m0}}{\omega_{m0}^2-\omega^2-i\Gamma_m\omega } \right)\\ \end{aligned}

For a single state transition from $\ket{0}$ to $\ket{m}$ contribution, we have

αij(ω)=Nε0ωm00d^immd^j0+0d^jmmd^i0ωm02ω2iΓmω(6){\alpha}_{ij}(\omega) =\frac{N}{\varepsilon_0} \frac{\omega_{m0} }{\hbar} \frac{\braket{0|\mathbf{\hat d}_i|m} \braket{m|\mathbf{\hat d}_j|0} + \braket{0|\mathbf{\hat d}_j|m} \braket{m|\mathbf{\hat d}_i|0} }{\omega_{m0}^2-\omega^2-i\Gamma_m\omega} \tag{6}

Averaging over all three directions, we get

αˉ(ω)=i=x,y,zαii/3=Nε02ωm030d^m2ωm02ω2iΓmω(7)\bar{\alpha} (\omega)= \sum_{i=x,y,z}\mathbf{\alpha}_{ii}/3 = \frac{N}{\varepsilon_0} \frac{2\omega_{m0} }{3\hbar} \frac{|\braket{0|\mathbf{\hat d}|m}|^2}{\omega_{m0}^2-\omega^2-i\Gamma_m\omega} \tag{7}

Oscillator strength

Comparing to the result from the Lorentz model

α(ω)=Nq2ε0m1ω02ω2iωΓ\alpha(\omega) = \frac{Nq^2}{\varepsilon_0 m} \frac{1}{\omega_0^2-\omega^2-i\omega\Gamma}

we see that with quantum version (Eq. 7), we need to have

2ωm00d^m23q2m\frac{2\omega_{m0}|\braket{0|\mathbf{\hat d}|m}|^2}{3\hbar} \to \frac{q^2}{m}

hence the oscillator strength $S_m$ can be defined as

Sm=mq22ωm00d^m23S_m= \frac{m}{q^2} \frac{2\omega_{m0}|\braket{0|\mathbf{\hat d}|m}|^2}{3\hbar}

so that

q2mSm=2ωm00d^m23\frac{q^2}{m} S_m = \frac{2\omega_{m0}|\braket{0|\mathbf{\hat d}|m}|^2}{3\hbar}

and the corresponding modified Lorentz model is

αm(ω)=Nq2ε0mSmω02ω2iωΓ\alpha_m(\omega) = \frac{Nq^2}{\varepsilon_0 m} \frac{S_m}{\omega_0^2-\omega^2-i\omega\Gamma}


Author | Chengcheng Xiao

Currently a postdoctoral research associate at Imperial College London. Predicting electron behaviour since 2016.