Previously we have shown how
quantum TD-LRT works, now let’s put that into work by calculating the polarizability of a quantum system.
Here we start by considering the dipole-electric field interaction energy
V^(t)=−d^⋅E(t)=er^⋅E(t)(1)
where the external electric field is still
E(t)=E0e−iωt+E0∗e+iωt.
Substituting Eq. 1 into Eq. 3 of
quantum TD-LRT, we get:
c˙n(t)=iℏ−1m∑cm(t)eiωnmtλ⟨n∣d^∣m⟩⋅E(t)
Again, if we initialize system to $\ket{0}$ at $t_0=-\infty$ (see Eq. 6 in
quantum TD-LRT ). From now assuming $n\neq 0$, to first order, we have
c˙n(t)=iℏ−1eiωn0t⟨n∣d^∣0⟩⋅E(t)
Explicitly
c˙n(t)=iℏ−1eiωn0t⟨n∣d^∣0⟩⋅E(t)=iℏ−1eiωn0t⟨n∣d^∣0⟩⋅(E0e−iωt+E0∗e+iωt)=ℏieiωn0t⟨n∣d^∣0⟩⋅E0e−iωt+ℏieiωn0t⟨n∣d^∣0⟩⋅E0∗e+iωt=F−(t)+F+(t)(2)
Note: Time ordering
$e^{\mu t'}$ is a damping factor added to the E-field so that we have perturbation adiabatically turned on in the remote past, and the integration converges as $t_0 \to -\infty$. For more, see [this post](https://chengcheng-xiao.github.io/post/2021/08/16/Greens_function_2.html).
Now we want to get $c_n(t)$, for that we need to integrate c˙n(t).
Here we assume the field was adiabatically turned on in the remote past $t_0=-\infty$ by multiplying the E-field by $e^{\mu t’}$ with $\mu \to 0^+$(or equivalently by adding a small positive imaginary part to the frequency). Then integrate from $t’=-\infty$ to $t’=t$, for $F_{-}(t)$ (similar to Eq. 6 in
quantum TD-LRT) we get
∫−∞tF−(t′)dt′=ℏi⟨n∣d^∣0⟩⋅E0∫−∞te[i(ωn0−ω)+μ]t′dt′=ℏi⟨n∣d^∣0⟩⋅E0i(ωn0−ω)+μei[(ωn0−ω)+μ]t
Similarily, for $F_+(t)$
∫−∞tF+(t′)dt′=ℏi⟨n∣d^∣0⟩⋅E0∗i(ωn0+ω)+μe[i(ωn0−ω)+μ]t
Combining
cn(t)=ℏi⟨n∣d^∣0⟩(E0i(ωn0−ω)+μe[i(ωn0−ω)+μ]t+E0∗i(ωn0+ω)+μe[i(ωn0+ω)+μ]t)=ℏi⟨n∣d^∣0⟩(E0i(ωn0−ω)+0+ei(ωn0−ω)t+E0∗i(ωn0+ω)+0+ei(ωn0+ω)t)(3)
where we have gotten rid of $e^{it0^+}=0$. Eq. 3 shows how the wavefunction evolves (to the first order) under a small perturbation of an external E-field - dipole interaction.
We can now calculate the expectation of the dipole operator. First remember that we have the system prepared in $\ket{0}$ ($c_0(t) \approx 1$) so that
∣ψ(t)⟩=c0(t)e−iω0t∣0⟩+m=0∑cm(t)e−iωmt∣m⟩≈e−iω0t∣0⟩+m=0∑cm(t)e−iωmt∣m⟩
The expectation of the dipole operator becomes
⟨d^⟩(t)=⟨ψ∣d^∣Ψ⟩=m,m′∑cm∗(t)cm′(t)ei(ωm−ωm′)t⟨m∣d^∣m′⟩=c0∗(t)c0(t)⟨0∣d^∣0⟩+m=0∑(cm∗(t)c0(t)ei(ωm−ω0)t⟨m∣d^∣0⟩+c0∗(t)cm(t)ei(ω0−ωm)t⟨0∣d^∣m⟩)+m=0,m′=0∑cm∗(t)cm′(t)ei(ωm−ωm′)t⟨m∣d^∣m′⟩≈⟨0∣d^∣0⟩+m=0∑(cm∗(t)ei(ωm−ω0)t⟨m∣d^∣0⟩+cm(t)ei(ω0−ωm)t⟨0∣d^∣m⟩)+m=0,m′=0∑cm∗(t)cm′(t)ei(ωm−ωm′)t⟨m∣d^∣m′⟩
We see there are zero-th, first, and second order terms involving $c$ coeffs.
The zero-th order term - c0∗(t)c0(t)⟨0∣d^∣0⟩ is a constant and does not affect the polarizability so we can safely ignore it, and if we ignore the second order term (because it is small), only focusing on the first order term, the dipole expectation value becomes
⟨d^⟩(t)≈m=0∑(cm∗(t)ei(ωm−ω0)t⟨m∣d^∣0⟩+cm(t)ei(ω0−ωm)t⟨0∣d^∣m⟩)=m=0∑(cm∗(t)eiωm0t⟨m∣d^∣0⟩+cm(t)eiω0mt⟨0∣d^∣m⟩)(4)
substituting Eq. 3 into Eq. 4, we get
⟨d^⟩(t)≈m=0∑[ℏ−i⟨0∣d^∣m⟩(E0∗−i(ωm0−ω)+0+e−i(ωn0−ω)t+E0−i(ωm0+ω)+0+e−i(ωm0+ω)t)eiωm0t⟨m∣d^∣0⟩]+m=0∑[ℏi⟨m∣d^∣0⟩(E0∗i(ωm0−ω)+0+ei(ωm0−ω)t+E0i(ωm0+ω)+0+ei(ωm0+ω)t)eiω0mt⟨0∣d^∣m⟩]=m=0∑[ℏ1⟨0∣d^∣m⟩(E0∗ωm0−ω+i0+e−i(ωn0−ω)t+E0ωm0+ω+i0+e−i(ωm0+ω)t)eiωm0t⟨m∣d^∣0⟩]+m=0∑[ℏ1⟨m∣d^∣0⟩(E0ωm0−ω−i0+ei(ωm0−ω)t+E0∗ωm0+ω−i0+ei(ωm0+ω)t)eiω0mt⟨0∣d^∣m⟩](5)
Note: electric field definition
We use $e^{i\omega t}$ and $e^{-i\omega t}$ to construct $\cos$. So here simply taking terms related to $e^{i\omega t}$ should give us the polarizability.
Taking only terms that contains $e^{-i\omega t}$ from Eq. 5
⟨d^⟩(t)≈ℏ1m=0∑[⟨0∣d^∣m⟩(E0ωm0+ω+i0+e−i(ωm0+ω)t)eiωm0t⟨m∣d^∣0⟩]+ℏ1m=0∑[⟨m∣d^∣0⟩(E0ωm0−ω−i0+ei(ωm0−ω)t+)eiω0mt⟨0∣d^∣m⟩]=ℏ1m=0∑[⟨0∣d^∣m⟩⟨m∣d^∣0⟩(ωm0+ω+i0+e−iωm0teiωm0t)]E0e−iωt+ℏ1m=0∑[⟨m∣d^∣0⟩⟨0∣d^∣m⟩(ωm0−ω−i0+eiωm0teiω0mt)]E0e−iωt=ℏ1m=0∑(ωm0+ω+i0+⟨0∣d^∣m⟩⟨m∣d^∣0⟩+ωm0−ω−i0+⟨m∣d^∣0⟩⟨0∣d^∣m⟩)E0e−iωt(5.1)
According to Maxwell’s equations, an external field we have
P(t)=Vd(t)=ε0α(ω)E(t,ω)
so
d(t)=Vε0α(ω)E(t,ω)(5.2)
Comparing Eq. 5.1 to Eq. 5.2, we see that
Vε0α(ω)=ℏ1m=0∑(ωm0+ω+i0+⟨0∣d^∣m⟩⟨m∣d^∣0⟩+ωm0−ω−i0+⟨m∣d^∣0⟩⟨0∣d^∣m⟩)
Now replacing $i0^+$ with phenomenological damping factor $i\Gamma_m/2$ of mode $m$,
Vε0α(ω)=ℏ1m=0∑(ωm0+ω+Γm/2⟨0∣d^∣m⟩⟨m∣d^∣0⟩+ωm0−ω−iΓm/2⟨m∣d^∣0⟩⟨0∣d^∣m⟩)=ℏ1m=0∑((ωm0+ω+Γm/2)(ωm0−ω−iΓm/2)⟨0∣d^∣m⟩⟨m∣d^∣0⟩(ωm0−ω−iΓm/2)+(ωm0+ω+Γm/2)(ωm0−ω−iΓm/2)⟨m∣d^∣0⟩⟨0∣d^∣m⟩(ωm0+ω+Γm/2))=ℏ1m=0∑(ωm02−ω2−iΓmω−Γm2/4⟨0∣d^∣m⟩⟨m∣d^∣0⟩ωm0+ωm02−ω2−iΓmω−Γm2/4⟨m∣d^∣0⟩⟨0∣d^∣m⟩ωm0)
and we can now calculate the polarizability tensor $\boldsymbol{\alpha}$
α(ω)=V1ε01ℏ1m=0∑(ωm02−ω2−iΓmω−Γm2/4⟨0∣d^∣m⟩⟨m∣d^∣0⟩ωm0+ωm02−ω2−iΓmω−Γm2/4⟨m∣d^∣0⟩⟨0∣d^∣m⟩ωm0)
α is a 3 by 3 rank-2 tensor, because ⟨m∣d^∣0⟩ comes from ⟨m∣d^∣0⟩E0, ⟨0∣d^∣m⟩ can lie in a different direction, and the components of α become:
αij(ω)=V1ε01ℏ1m=0∑(ωm02−ω2−iΓmω−Γm2/4⟨0∣d^i∣m⟩⟨m∣d^j∣0⟩ωm0+ωm02−ω2−iΓmω−Γm2/4⟨m∣d^j∣0⟩⟨0∣d^i∣m⟩ωm0)
Using number density $N = 1/V$ which gives the number of this dipole moments in side a unit volume, and ignoring the second order term $- \Gamma_m^2/4$ since dampening is small, we have
αij(ω)=V1ε01ℏ1m=0∑(ωm02−ω2−iΓmω⟨0∣d^i∣m⟩⟨m∣d^j∣0⟩ωm0+ωm02−ω2−iΓmω⟨m∣d^j∣0⟩⟨0∣d^i∣m⟩ωm0)
For a single state transition from $\ket{0}$ to $\ket{m}$ contribution, we have
αij(ω)=ε0Nℏωm0ωm02−ω2−iΓmω⟨0∣d^i∣m⟩⟨m∣d^j∣0⟩+⟨0∣d^j∣m⟩⟨m∣d^i∣0⟩(6)
Averaging over all three directions, we get
αˉ(ω)=i=x,y,z∑αii/3=ε0N3ℏ2ωm0ωm02−ω2−iΓmω∣⟨0∣d^∣m⟩∣2(7)
Oscillator strength
Comparing to the result from the Lorentz model
α(ω)=ε0mNq2ω02−ω2−iωΓ1
we see that with quantum version (Eq. 7), we need to have
3ℏ2ωm0∣⟨0∣d^∣m⟩∣2→mq2
hence the oscillator strength $S_m$ can be defined as
Sm=q2m3ℏ2ωm0∣⟨0∣d^∣m⟩∣2
so that
mq2Sm=3ℏ2ωm0∣⟨0∣d^∣m⟩∣2
and the corresponding modified Lorentz model is
αm(ω)=ε0mNq2ω02−ω2−iωΓSm