Fermi's Golden Rule

DFT,  Math 

References

Ref: http://staff.ustc.edu.cn/~yuanzs/teaching/Fermi-Golden-Rule-No-II.pdf

Previosly, we have looked at the quantum TD-LRT, now let us put that into action by consider an perturbation that has a harmonic time-dependence (typical of interaction with radiation):

V(t)=Veiωt+VeiωtV(t) = V e^{-i\omega t} + V^\dagger e^{i\omega t}

Then the relevant transition matrix element is:

Vfi(t)=fV(t)ieiωt+fV(t)ieiωtV_{fi}(t) = \braket{f|V(t)|i}e^{-i\omega t} + \braket{f|V^\dagger(t)|i} e^{i\omega t}

Eq. 5 in :link:quantum TD-LRT becomes

cf(t)=cf(t)(1)=Vfiit0tδtei(ωfiω)t+t0tδtei(ωfi+ω)t=Vfiiei(ωfiω)t1i(ωfiω)+Vfiiei(ωfi+ω)t1i(ωfi+ω)\begin{aligned} {c}_f(t) = {c}_f(t)^{(1)} &= \frac{V_{fi}}{i\hbar} \int_{t_0}^t \delta t' e^{i(\omega_{fi}-\omega)t'} + \int_{t_0}^t\delta t' e^{i(\omega_{fi}+\omega)t'} \\ &=\frac{V_{fi}}{i\hbar} \frac{e^{i(\omega_{fi}-\omega)t}-1}{i(\omega_{fi}-\omega)} + \frac{V_{fi}}{i\hbar} \frac{e^{i(\omega_{fi}+\omega)t}-1}{i(\omega_{fi}+\omega)} \end{aligned}

Here, let’s make an assumption that $\omega$ is close to $\omega_fi$ (which is called the Bohr angular frequency of $\psi_f$ and $\psi_i$). In this case, the first term dominates and we can safely ignore the second term.

cf(t)=cf(t)(1)=Vfiiei(ωfiω)t1i(ωfiω)=Vfiiei(ωfiω)t/2(ei(ωfiω)t/2ei(ωfiω)t/2)i(ωfiω)=Vfiiei(ωfiω)t/2(2isin(ωfiωt2))i(ωfiω)=Vfiiei(ωfiω)t/2sin((ωfiω)t2)(ωfiω)/2\begin{aligned} {c}_f(t) = {c}_f(t)^{(1)}&= \frac{V_{fi}}{i\hbar} \frac{e^{i(\omega_{fi}-\omega)t}-1}{i(\omega_{fi}-\omega)} \\ &= \frac{V_{fi}}{i\hbar} \frac{e^{i(\omega_{fi}-\omega)t/2}(e^{i(\omega_{fi}-\omega)t/2}-e^{-i(\omega_{fi}-\omega)t/2})}{i(\omega_{fi}-\omega)}\\ &= \frac{V_{fi}}{i\hbar} \frac{e^{i(\omega_{fi}-\omega)t/2}(2i\sin(\frac{\omega_{fi}-\omega t}{2}))}{i(\omega_{fi}-\omega)}\\ &= \frac{V_{fi}}{i\hbar} \frac{e^{i(\omega_{fi}-\omega)t/2}\sin(\frac{(\omega_{fi}-\omega) t}{2})}{(\omega_{fi}-\omega)/2}\\ \end{aligned}

The corresponding transition probability is

Pif(t)=cf(t)(1)2=Vfi22[sin((ωfiω)t2)(ωfiω)/2]2P_{i\to f}(t) = |{c}_f(t)^{(1)}|^2 = \frac{|V_{fi}|^2}{\hbar^2} \left[\frac{\sin(\frac{(\omega_{fi}-\omega) t}{2})}{(\omega_{fi}-\omega)/2}\right]^2

!!! note Nascent Dirac delta function

The equation

F(ωfiω,t)=[sin((ωfiω)t2)(ωfiω)/2]2F(\omega_{fi}-\omega,t)=\left[\frac{\sin(\frac{(\omega_{fi}-\omega) t}{2})}{(\omega_{fi}-\omega)/2}\right]^2

behaves peaks at $\omega_{fi}$ with a width of $\Delta \omega$: where $\Delta \omega \approx \frac{4pi}{t}$. We see that as $t \to \infty$, this becomes a delta function.

However, this function has a different normalization comparing to a delta function:

[sin((ωfiω)t2)(ωfiω)/2]2dω=(2t)t2sin2(x)x2dx=2πt\int \left[\frac{\sin(\frac{(\omega_{fi}-\omega) t}{2})}{(\omega_{fi}-\omega)/2}\right]^2 \hbar d \omega = \hbar (\frac{2}{t}) t^2 \int \frac{\sin^2(x)}{x^2} d x =2 \pi \hbar t

!!!

Converting using Nascent Dirac delta function, we get

Pif(t)=cf(t)(1)2=Vfi222πtδ(ωfiω)=2πVfi2tδ(ωfiω)P_{i\to f}(t) = |{c}_f(t)^{(1)}|^2 = \frac{|V_{fi}|^2}{\hbar^2} 2 \pi \hbar t \delta(\omega_{fi}-\omega) = \frac{2 \pi}{\hbar} |V_{fi}|^2 t \delta(\omega_{fi}-\omega)

And the transition rate is

Wif=Pif(t)/t=cf(t)(1)2=2πVfi2δ(ωfωiω)W_{i\to f} = P_{i\to f}(t)/t= |{c}_f(t)^{(1)}|^2 = \frac{2 \pi}{\hbar} |V_{fi}|^2 \delta(\omega_{f} - \omega_i-\omega)

Which is the Fermi’s Golden Rule

Continuum

Assuming that the final state lives in a continuum of states, we need to account for all states the system can jump to using

Pi(t)=Pif(t)ρ(E)dE=Vfi22[sin((ωfiω)t2)(ωfiω)/2]2ρf(E)dE\begin{aligned} P_{i}(t) &= \int P_{i\to f}(t) \rho(E) dE\\ &= \int \frac{|V_{fi}|^2}{\hbar^2} \left[\frac{\sin(\frac{(\omega_{fi}-\omega) t}{2})}{(\omega_{fi}-\omega)/2}\right]^2 \rho_f(E) dE\\ \end{aligned}

since $F(\omega_{fi}-\omega,t)$ acts as a delta function, we can extract $\rho(E)$ as $\rho(E_{fi})$

Pi(t)=Vfi22[sin((ωfiω)t2)(ωfiω)/2]2ρf(E)dE=2πVfi2ρf(Efi)t\begin{aligned} P_{i}(t) &= \int \frac{|V_{fi}|^2}{\hbar^2} \left[\frac{\sin(\frac{(\omega_{fi}-\omega) t}{2})}{(\omega_{fi}-\omega)/2}\right]^2 \rho_f(E) dE\\ &= \frac{2\pi}{\hbar}|V_{fi}|^2 \rho_f(E_{fi}) t \end{aligned}

And the transition rate is:

W=Pi(t)/t=2πVfi2ρf(Efi)W = P_{i}(t) /t = \frac{2\pi}{\hbar}|V_{fi}|^2 \rho_f(E_{fi})

Which is the Fermi’s Golden Rule in continuum.



Author | Chengcheng Xiao

Currently a postdoctoral research associate at Imperial College London. Predicting electron behaviour since 2016.