Deriving Electron Localization Function

DFT 

Pair probability density

Under Hartree-Fock, the wave function is written as Slater determinant:

ΨAS=χ1(x1)χ2(x1)χN(x1)χ1(x2)χ2(x2)χN(x2)χ1(xN)χ2(xN)χN(xN),(1)\Psi_{A S}=\left|\begin{array}{cccc} \chi_{1}\left(\mathbf{x}_{1}\right) & \chi_{2}\left(\mathbf{x}_{1}\right) & \cdots & \chi_{N}\left(\mathbf{x}_{1}\right) \\ \chi_{1}\left(\mathbf{x}_{2}\right) & \chi_{2}\left(\mathbf{x}_{2}\right) & \cdots & \chi_{N}\left(\mathbf{x}_{2}\right) \\ \vdots & \vdots & & \vdots \\ \chi_{1}\left(\mathbf{x}_{N}\right) & \chi_{2}\left(\mathbf{x}_{N}\right) & \cdots & \chi_{N}\left(\mathbf{x}_{N}\right) \end{array}\right|, \tag{1}

note that the normalization factor (N!)1/2(N!)^{-1/2} is ignored here so that ΨASΨAS=N!\braket{\Psi_{A S}|\Psi_{A S}}=N! where NN is the number of electron in the system. Let’s first consider two electron case. If the two electrons have the same spin, then we can explicitly write out the Slater determinant as:

ΨAS=χ1(x1)χ2(x1)χ1(x2)χ2(x2),\Psi_{A S}=\left|\begin{array}{cc} \chi_{1}\left(\mathbf{x}_{1}\right) & \chi_{2}\left(\mathbf{x}_{1}\right) \\ \chi_{1}\left(\mathbf{x}_{2}\right) & \chi_{2}\left(\mathbf{x}_{2}\right) \\ \end{array}\right|,

where χ1=ψ1β1\chi_1 = \psi_1 \otimes \beta_1. ψ\psi signifies the spacial orbitals and β\beta is is the spin orbital of the down spin channel (or for the other spin channel α\alpha). Here, all χ\chi are with β\beta spin for we are going to consider two same spin electrons.

For spin orbitals we have the orthornormal relations:

α(w)β(w)dw=0β(w)β(w)dw=1\begin{aligned} \int \alpha(w) \beta(w) dw &= 0 \\ \int \beta(w) \beta(w) dw &= 1 \end{aligned}

If we expand out the determinant:

ΨAS=[ψ1(r1)β(ω1)ψ2(r2)β(ω2)ψ1(r2)β(ω2)ψ2(r1)β(ω1)].\Psi_{A S}= [\psi_1(r_1)\beta(\omega_1)\psi_2(r_2)\beta(\omega_2)-\psi_1(r_2)\beta(\omega_2)\psi_2(r_1)\beta(\omega_1)].

The probability of finding the first electron at r1r_1 with dr1dr_1 and the second electron at r2r_2 with dr2dr_2 is:

Ψ2dr1dr2dω1dω2=(ψ1(r1)β(ω1)ψ2(r2)β(ω2)ψ1(r2)β(ω2)ψ2(r1)β(ω1))2dr1dr2dω1dω2|\Psi|^2 dr_1 dr_2 d\omega_1 d\omega_2 = |(\psi_1(r_1)\beta(\omega_1)\psi_2(r_2)\beta(\omega_2)-\psi_1(r_2)\beta(\omega_2)\psi_2(r_1)\beta(\omega_1))|^2 dr_1 dr_2 d\omega_1 d\omega_2

Integrating out ω1\omega_1 and ω2\omega_2, we get:

P(r1,r2)dr1dr2=[ψ1(r1)2ψ2(r2)2+ψ1(r2)2ψ2(r1)2]ψ1(r1)ψ2(r1)ψ2(r2)ψ1(r2)ψ1(r1)ψ2(r1)ψ2(r2)ψ1(r2)dr1dr2,(2)\begin{aligned} P(r_1,r_2) dr_1 dr_2 = & [|\psi_1(r_1)|^2 |\psi_2(r_2)|^2 + |\psi_1(r_2)|^2 |\psi_2(r_1)|^2]\\ & - \psi^*_1(r_1)\psi_2(r_1)\psi^*_2(r_2)\psi_1(r_2)\\ & - \psi_1(r_1)\psi^*_2(r_1)\psi_2(r_2)\psi^*_1(r_2) dr_1 dr_2, \tag{2} \end{aligned}

note that we’ve taken advantage of the orthornormal relation bettween α\alpha and β\beta. Eq. 2 gives us the probability of finding two same spin electrons at r1r_1 and r2r_2 (within the volume of dr1dr_1 and dr2dr_2), we call this probability the pair probability. It is sometimes also called the second-order density matrix (:link: REF0,Eq.1;:link: REF1;:link: REF2) and here, it’s normalized to the number of electron pairs, N(N1)N(N-1). Here, because we are only considering two electrons in the slaster determinant, N=2N=2.

Next, we can add change the look of this pair probability by adding some additional terms:

P(r1,r2)dr1dr2=[ψ1(r1)2ψ2(r2)2+ψ1(r2)2ψ2(r1)2ψ1(r1)ψ2(r1)ψ2(r2)ψ1(r2)ψ1(r1)ψ2(r1)ψ2(r2)ψ1(r2)]dr1dr2={ψ1(r1)2ψ2(r2)2+ψ1(r2)2ψ2(r1)2+[ψ1(r1)2ψ1(r2)2+ψ2(r1)2ψ2(r2)2ψ1(r1)2ψ1(r2)2ψ2(r1)2ψ2(r2)2]ψ1(r1)ψ2(r1)ψ2(r2)ψ1(r2)ψ1(r1)ψ2(r1)ψ2(r2)ψ1(r2)}dr1dr2={[ψ1(r1)2+ψ2(r1)2][ψ1(r2)2+ψ2(r2)2]ψ1(r1)ψ1(r2)+ψ2(r1)ψ2(r2)2}dr1dr2=[iψi(r1)ψi(r1)jψj(r2)ψj(r2)kψk(r1)ψk(r2)2]dr1dr2=[ρ(r1)ρ(r2)ρ(r1,r2)2]dr1dr2,(3)\begin{aligned} P(r_1,r_2) dr_1 dr_2 &= [|\psi_1(r_1)|^2 |\psi_2(r_2)|^2 + |\psi_1(r_2)|^2 |\psi_2(r_1)|^2\\ & \quad - \psi^*_1(r_1)\psi_2(r_1)\psi^*_2(r_2)\psi_1(r_2) - \psi_1(r_1)\psi^*_2(r_1)\psi_2(r_2)\psi^*_1(r_2)] dr_1 dr_2 \\ &= \{ |\psi_1(r_1)|^2 |\psi_2(r_2)|^2 + |\psi_1(r_2)|^2 |\psi_2(r_1)|^2\\ & \textcolor{red}{\quad + [ |\psi_1(r_1)|^2 |\psi_1(r_2)|^2 + |\psi_2(r_1)|^2 |\psi_2(r_2)|^2} \textcolor{red}{ - |\psi_1(r_1)|^2 |\psi_1(r_2)|^2 - |\psi_2(r_1)|^2 |\psi_2(r_2)|^2 ]}\\ & \quad - \psi^*_1(r_1)\psi_2(r_1)\psi^*_2(r_2)\psi_1(r_2) - \psi_1(r_1)\psi^*_2(r_1)\psi_2(r_2)\psi^*_1(r_2) \} dr_1 dr_2\\ &= \{ [ |\psi_1(r_1)|^2+|\psi_2(r_1)|^2] \cdot [|\psi_1(r_2)|^2+|\psi_2(r_2)|^2]\\ & \quad-|\psi^*_1(r_1)\psi_1(r_2)+\psi^*_2(r_1)\psi_2(r_2)|^2 \} dr_1 dr_2\\ &= [ \sum_i \psi^*_i(r_1)\psi_i(r_1) \sum_j \psi^*_j(r_2)\psi_j(r_2) - |\sum_k \psi^*_k(r_1)\psi_k(r_2)|^2 ]dr_1 dr_2\\ &= [ \rho(r_1)\rho(r_2) -|\rho(r_1,r_2)|^2 ]dr_1 dr_2, \tag{3} \end{aligned}

where we have used the one-body density matrix:

ρ(r1)=ρ(r1,r1)=iψi(r1)ψi(r1)ρ(r1,r2)=iψi(r1)ψi(r2)(4)\begin{aligned} \rho(r_1) &= \rho(r_1, r_1) = \sum_i \psi^*_i(r_1)\psi_i(r_1) \\ \rho(r_1, r_2) &= \sum_i \psi^*_i(r_1)\psi_i(r_2) \tag{4} \end{aligned}

The one body density matrix also have the following property:

ρ1(r1,r2)2dr2=ρ(r1).(6)\int\left|\rho_{1}(r_{1},r_{2})\right|^{2} dr_{2}=\rho(r_{1}). \tag{6}

Electron Localization Function (ELF)

If an electron (with spin σ\sigma) is located with certainty at position r1r_{1}, then the conditional probability of finding a second like-spin electron at position r2r_{2} is obtained by dividing the pair probability by the probability of finding the first electron at r1r_{1}, i.e. the total charge density at r1r_{1} (see the definition on condictional probability):

Pcondσσ(r1,r2)=Pσσ(r1,r2)ρσ(r1)=ρσ(r2)ρσ(r1,r2)2ρσ(r1),(7)\begin{aligned} P^{\sigma\sigma}_\text{cond}\left(r_{1}, r_{2}\right) &= \frac{ P^{\sigma\sigma}\left(r_{1}, r_{2}\right)}{\rho^{\sigma}(r_{1})}\\ &= \rho^{\sigma}(r_{2}) - \frac{\left|\rho^{\sigma}(r_{1},r_{2})\right|^2}{\rho^{\sigma}(r_{1})}, \tag{7} \end{aligned}

using the properties of ρσσ(r1,r2)\rho^{\sigma \sigma}(r_{1},r_{2}), we can see that,

Pcond σσ(r1,r1)=0,(8)P^{\sigma\sigma}_{\text {cond }}(r_{1},r_{1})=0, \tag{8}

and (see Eq. 10 in becke1983),

ρσ(r1,r2)2ρσ(r1)dr2=1,\int \frac{\left|\rho^{\sigma}(r_{1},r_{2})\right|^2}{\rho^{\sigma}(r_{1})} dr_2 = 1,

so that,

Pcond σσ(r1,r2)dr2=N1,(9)\int P^{\sigma\sigma}_{\text {cond }}(r_{1},r_{2}) d r_{2}=N-1, \tag{9}

where where NN is the total number electrons (with the same spin) in the system. i.e., if a σ\sigma spin electron is definitely at point r1r_1, then the total probability of finding another σ\sigma-spin electron elsewhere in the system is N1N - 1 (we have N1N-1 electrons left with the same spin, remember in the beginning we set spin of all electrons to be the same β\beta). In our case, N=2N=2 so the total probability of finding another σ\sigma-spin electron is 11.

Now, if we take the the second term from Eq. 7, we see that it has the unit of a charge density. This, turns out to be the so-called the exchange charge density (See becke1983):

ρxσσ(r1,r2)=ρσ(r1,r2)2ρσ(r1).(10)\rho_{x}^{\sigma \sigma} (r_1,r_2) = \frac{\left|\rho^{\sigma}(r_{1},r_{2})\right|^2}{\rho^{\sigma}(r_{1})}. \tag{10}

and the numerator is called the exchange density.

Remember the Taylor expansion of exe^x around x=0x=0 has the form of:

ex=n=0xnn!=1+x+x22!+x33!+,e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n !}=1+x+\frac{x^{2}}{2 !}+\frac{x^{3}}{3 !}+\cdots,

comparing this to the definition of Taylor series:

f(x)=f(a)+f(a)1!(xa)+f(a)2!(xa)2+f(a)3!(xa)3+,f(x) = f(a)+\frac{f^{\prime}(a)}{1 !}(x-a)+\frac{f^{\prime \prime}(a)}{2 !}(x-a)^{2}+\frac{f^{\prime \prime \prime}(a)}{3 !}(x-a)^{3}+\cdots,

or, if we switch to another coordinate system that’s centered around aa:

f(a+s)=f(a)+f(a)1!(s)+f(a)2!(s)2+f(a)3!(s)3+,f(a+s) = f(a)+\frac{f^{\prime}(a)}{1 !}(s)+\frac{f^{\prime \prime}(a)}{2 !}(s)^{2}+\frac{f^{\prime \prime \prime}(a)}{3 !}(s)^{3}+\cdots,

we see that we can express the function at a specific point (a+sa+s) as:

f(a+s)=esddxf(x)x=a={1+sddx+[sddx]22!+[sddx]33!+}f(a)=f(a)+f(a)1!s+f(a)2!s2+f(a)3!s3+.(11)\begin{aligned} f(a+s) &= e^{s\frac{d}{d x}} f(x)|_{x=a}\\ &= \left \{1 + s\frac{d}{d x} +\frac{[s\frac{d}{d x}]^{2}}{2 !}+\frac{[s\frac{d}{d x}]^{3}}{3 !}+\cdots \right \} f(a) \\ &= f(a)+\frac{f^{\prime}(a)}{1 !}s+\frac{f^{\prime \prime}(a)}{2 !}s^{2}+\frac{f^{\prime \prime \prime}(a)}{3 !}s^{3}+\cdots. \tag{11} \end{aligned}

Using Eq. 11, we can then Taylor expand the exchange charge density ρxσσ(r1,r2)\rho_{x}^{\sigma \sigma} (r_1,r_2) for r2r_2 near r1r_1:

ρxσσ(r1,r2)=ρxσσ(r1,r2r1+r1)=ρxσσ(r1,s+r1)ρxσσ(r1,r1+s)=esrρxσσ(r1,r)rr1,(12)\begin{aligned} \rho_{x}^{\sigma \sigma} (\vec r_1,\vec r_2) &= \rho_{x}^{\sigma \sigma} (\vec r_1, \vec r_2- \vec r_1+ \vec r_1)\\ &= \rho_{x}^{\sigma \sigma} (\vec r_1,\vec s+\vec r_1)\\ \rho_{x}^{\sigma \sigma} (\vec r_1,\vec r_1 + \vec s) &= e^{\vec s \cdot \vec \nabla_{\vec r}} \rho_{x}^{\sigma \sigma} (\vec r_1,\vec r)|_{\vec r \to \vec r_1}, \tag{12} \end{aligned}

where we have defined s=r2r1\vec s = \vec r_2 -\vec r_1. As r2r1\vec r_2 \to \vec r_1, s0\vec s \to 0. Note that rr here is completely different from r2r_2 used before.

If we take the spherical average of the Taylor expansion esr2e^{\vec s \cdot \vec \nabla_{\vec r_2}} around r2r1\vec r_2 \to \vec r_1 with s\vec s:

esr2=14πs2esr2s2sin(ϕs)dϕsdθs\begin{aligned} \langle e^{\vec s \cdot \vec \nabla_{\vec r_2}} \rangle &= \frac{1}{4\pi |\vec s|^2} \int \int e^{\vec s \cdot \vec \nabla_{\vec r_2}} |\vec s|^2 \sin(\phi_s)\, d\phi_s\, d \theta_s\\ \end{aligned}

according to Eq. 12 in becke1983, we arrived at:

esr2=sinh(sr2)(sr2),(13)\langle e^{\vec s \cdot \vec \nabla_{\vec r_2}} \rangle =\frac{\sinh \left(s \nabla_{\vec r_2}\right)}{\left(s \nabla_{\vec r_2}\right)}, \tag{13}

Here, r2\nabla_{\vec r_2} is the derivative along s=r2r1\vec s = \vec r_2 - \vec r_1 direction and is angle independent (it only acts on the coordinates of the second electron r2\vec r_2 and not s\vec s in the double integral, that’s why I haven’t wrote it as s\nabla_{\vec s}, later on after I’ve applied this spherically averaged operator on to a state I’ll express it as s\nabla_{\vec s}).

If we use the Taylor expansion of sinh\sinh function, we get:

esr2=1+13!s2r22+15!s4r24+17!s6r26+,(14)\langle e^{\vec s \cdot \vec \nabla_{\vec r_2}} \rangle=1+\frac{1}{3 !} s^{2} \nabla_{\vec r_2}^{2}+\frac{1}{5 !} s^{4} \nabla_{\vec r_2}^{4}+\frac{1}{7 !} s^{6} \nabla_{\vec r_2}^{6}+\cdots, \tag{14}

note that ss in Eq. 14 is a scalar.

Now we have the form of the spherically averaged Taylor expansion operator in Eq. 14, plugging this back into Eq. 12 gives us:

ρx(r1,s)=(1+16s2r22+)ρx(r1,r2)r2r1=(1+16s2s2+)ρx(r1,s)s0(15)\begin{aligned} \left\langle\rho_{x}(\vec r_1, s)\right\rangle&=\left.\left(1+\frac{1}{6} s^{2} \nabla_{\vec r_2}^{2}+\cdots\right) \rho_{x}\left(\vec r_1, \vec r_2\right)\right|_{\vec r_2 \to \vec r_1}\\ &=\left.\left(1+\frac{1}{6} s^{2} \nabla_{\vec s}^{2}+\cdots\right) \rho_{x}\left(\vec r_1, \vec s\right)\right|_{\vec s \to 0}\\ \end{aligned} \tag{15}

Cutting off the expansion up to second order, we need the result of operation with the Laplacian s2\nabla_{\vec s}^2 on the exchange charge ρx\rho_x:

r22ρx(r1,r2)r2r1=s2iψi(r1)ψi(r2)jψj(r1)ψj(r2)kψk(r1)ψk(r1)s2ρx(r1,s)s0=s2ijψi(r1)ψi(r1+s)ψj(r1)ψj(r1+s)kψk(r1)ψk(r1)=ijψi(r1)ψj(r1)s2[ψi(r1+s)ψj(r1+s)]kψk(r1)ψk(r1)=ij[ψiψi(ψj2ψj)+ψjψj(ψi2ψi)+ψiψj(2ψiψj)]kψkψk.(16)\begin{aligned} \nabla_{\vec r_2}^2 \rho_{x}\left(\vec r_1, \vec r_2\right)|_{\vec r_2 \to \vec r_1} &= \nabla_{\vec s}^2 \frac{\sum_i \psi^*_i(\vec r_1)\psi_i(\vec r_2) \sum_j \psi_j(\vec r_1)\psi^*_j(\vec r_2)}{\sum_k \psi^*_k(\vec r_1)\psi_k(\vec r_1)}\\ \nabla_{\vec s}^2 \rho_{x}\left(\vec r_1, \vec s\right)|_{\vec s \to 0} &= \nabla_{\vec s}^2\frac{\sum_i \sum_j \psi^*_i(\vec r_1)\psi_i(\vec r_1+\vec s) \psi_j(\vec r_1)\psi^*_j(\vec r_1+\vec s)}{\sum_k \psi^*_k(\vec r_1)\psi_k(\vec r_1)}\\ &= \frac{\sum_i \sum_j \psi^*_i(\vec r_1)\psi_j(\vec r_1) \nabla_{\vec s}^2 [\psi_i(\vec r_1+\vec s)\psi^*_j(\vec r_1+\vec s)]}{\sum_k \psi^*_k(\vec r_1)\psi_k(\vec r_1)}\\ &=\frac{\sum_i\sum_j \left [ \psi_i^* \psi_i (\psi_j \nabla^2 \psi_j^*) +\psi_j \psi_j^* (\psi_i^* \nabla^2 \psi_i) + \psi_i^* \psi_j (2 \nabla \psi_i \nabla \psi_j^*) \right ]} {\sum_k \psi^*_k\psi_k}. \end{aligned} \tag{16}

Note that we are Taylor expanding at r2r1\vec r_2 \to \vec r_1 (s0\vec s \to 0), thus, we have changed all r2\vec r_2 dependence to r1\vec r_1(r1+s\vec r_1+\vec s).

Becausesψi(r1+s)s0=r1ψi(r1)\nabla_{\vec s} \psi_i(\vec r_1 + \vec s) |_{\vec s \to 0} = \nabla_{\vec r_1} \psi_i(\vec r_1), we can drop all rr dependencies for simplicity.

The first two terms in Eq. 16 can be expressed as:

ij[ψiψi(ψj2ψj)+ψjψj(ψi2ψi)]kψkψk=jψj2ψj+iψi2ψi=iψi2ψi+iψi2ψi+2iψiψi2iψiψi=i(ψi2ψi+2ψiψi+ψi2ψi)2iψiψi,\begin{aligned} &\frac{\sum_i\sum_j \left [ \psi_i^* \psi_i (\psi_j \nabla^2 \psi_j^*) +\psi_j \psi_j^* (\psi_i^* \nabla^2 \psi_i) \right ]} {\sum_k \psi^*_k\psi_k}\\ &= \sum_j \psi_j \nabla^2 \psi_j^* + \sum_i \psi_i^* \nabla^2 \psi_i\\ &= \sum_i \psi_i \nabla^2 \psi_i^* + \sum_i \psi_i^* \nabla^2 \psi_i + 2 \sum_i \nabla \psi_i \nabla \psi_i^* - 2 \sum_i \nabla \psi_i \nabla \psi_i^*\\ &= \sum_i (\psi_i \nabla^2 \psi_i^* + 2 \nabla \psi_i \nabla \psi_i^* + \psi_i^* \nabla^2 \psi_i) - 2 \sum_i \nabla \psi_i \nabla \psi_i^*, \end{aligned}

since ψi=(ψi)\nabla \psi_i^* = \left( \nabla \psi_i \right)^* and that we can write ψiψi=ψi2\nabla \psi_i \nabla \psi_{i}^{*} = \lvert \nabla \psi_i \rvert^{2} the first two term in Eq. 16 becomes:

ij[ψiψi(ψj2ψj)+ψjψj(ψi2ψi)]kψkψk=2iψi22iψi2=2ρ2τ,(17)\begin{aligned} &\frac{\sum_i\sum_j \left [ \psi_i^* \psi_i (\psi_j \nabla^2 \psi_j^*) +\psi_j \psi_j^* (\psi_i^* \nabla^2 \psi_i) \right ]} {\sum_k \psi^*_k\psi_k}\\ &= \nabla^2 \sum_i |\psi_i|^2 - 2 \sum_i|\nabla \psi_i|^2\\ &= \nabla^2 \rho - 2\tau, \end{aligned} \tag{17}

where we have used the positively defined kinetic energy density τ=iψi2\tau=\sum_i|\nabla \psi_i|^2.

The third term in Eq. 16 is:

ij[ψiψj(2ψiψj)]kψkψk=12ij4ψiψjψiψj/kψkψk,\begin{aligned} &\frac{\sum_i\sum_j \left [ \psi_i^* \psi_j (2 \nabla \psi_i \nabla \psi_j^*) \right ]} {\sum_k \psi^*_k\psi_k} \\ & = \frac{1}{2} \sum_i \sum_j 4\psi_i^* \psi_j \nabla \psi_i \nabla \psi_j^* /\sum_k \psi^*_k\psi_k, \end{aligned}

assuming real orbitals (not sure if what would happen otherwise, feel free to double check yourself!), we have:

ij[ψiψj(2ψiψj)]kψkψk=12ij(ψiψjψiψj+ψiψjψiψj+ψiψjψiψj+ψiψjψiψj)/kψkψk=12i(ψiψi+ψiψi)j(ψjψj+ψjψj)/kψkψk=12(iψiψi)2kψkψk=12(ρ)2ρ.(18)\begin{aligned} &\frac{\sum_i\sum_j \left [ \psi_i^* \psi_j (2 \nabla \psi_i \nabla \psi_j^*) \right ]} {\sum_k \psi^*_k\psi_k} \\ &= \frac{1}{2} \sum_i \sum_j ( \nabla \psi_i \nabla \psi_j \psi_i \psi_j +\nabla \psi_i \psi_j \psi_i \nabla \psi_j + \psi_i \nabla \psi_j \nabla \psi_i \psi_j + \psi_i \nabla \psi_j \nabla \psi_i \psi_j) /\sum_k \psi_k\psi_k \\ &= \frac{1}{2} \sum_i (\nabla \psi_i \psi _i + \psi_i \nabla \psi_i) \sum_j (\nabla \psi_j \psi _j + \psi_j \nabla \psi_j) /\sum_k \psi_k\psi_k\\ &= \frac{1}{2} \frac{(\nabla \sum_i \psi_i \psi_i)^2}{\sum_k \psi_k\psi_k}\\ &= \frac{1}{2} \frac{(\nabla \rho)^2}{\rho}. \tag{18} \end{aligned}

Putting all three terms in Eq. 16 back together, we get:

r22ρx(r1,r2)r2r1=2ρ2τ+12(ρ)2ρ.\nabla_{\vec r_2}^2 \rho_{x}\left(\vec r_1, \vec r_2\right)|_{\vec r_2 \to \vec r_1} = \nabla^2 \rho - 2\tau + \frac{1}{2} \frac{(\nabla \rho)^2}{\rho}.

or,

r22ρx(r1,r2)r2r1=s2ρx(r1,s)s0=2ρ2τ+12(ρ)2ρ.(19)\nabla_{\vec r_2}^2 \rho_{x}\left(\vec r_1, \vec r_2\right)|_{\vec r_2 \to \vec r_1} = \nabla_{\vec s}^2 \rho_{x}\left(\vec r_1, \vec s\right)|_{\vec s \to 0} = \nabla^2 \rho - 2\tau + \frac{1}{2} \frac{(\nabla \rho)^2}{\rho}. \tag{19}

Remember that what we really want is the Taylor expansion of Pcondσσ(r1,r2)P^{\sigma \sigma}_\text{cond} (\vec r_1, \vec r_2). So, instead of ρx(r1,r2)\left\langle \rho_x (\vec r_1, \vec r_2) \right\rangle in Eq. 15, we now write:

Pcondσσ(r1,r2)=(1+16s2r22+)Pcondσσ(r1,r2)r2r1=Pcondσσ(r1,r1)+16s2r22Pcondσσ(r1,r2)+.(20)\begin{aligned} \left\langle P^{\sigma\sigma}_\text{cond}\left(\vec r_{1}, \vec r_{2}\right) \right\rangle&=\left.\left(1+\frac{1}{6} s^{2} \nabla_{\vec r_2}^{2}+\cdots\right) P^{\sigma\sigma}_\text{cond}\left(\vec r_{1}, \vec r_{2}\right)\right|_{\vec r_2 \to \vec r_1}\\ &=P^{\sigma\sigma}_\text{cond}\left(\vec r_{1}, \vec r_{1}\right) + \frac{1}{6} s^{2} \nabla_{\vec r_2}^{2} P^{\sigma\sigma}_\text{cond}\left(\vec r_{1}, \vec r_{2}\right) + \cdots. \end{aligned} \tag{20}

The first term is:

Pcondσσ(r1,r1),P^{\sigma\sigma}_\text{cond}\left(\vec r_{1}, \vec r_{1}\right),

and we see that it equals to 00 as:

Pcondσσ(r1,r1)=ρσ(r1)ρσ(r1,r1)2ρσ(r1)=ρσ(r1)ρσ(r1)=0.\begin{aligned} P^{\sigma\sigma}_\text{cond}\left(\vec r_{1}, \vec r_{1}\right) &= \rho^{\sigma}(\vec r_{1}) - \frac{\left|\rho^{\sigma}(\vec r_{1},\vec r_{1})\right|^2}{\rho^{\sigma}(\vec r_{1})} \\ &= \rho^{\sigma}(\vec r_{1}) - {\rho^{\sigma}(\vec r_{1})} =0. \end{aligned}

The second term can be easily calculated using Eq. 19:

16s2r22Pcondσσ(r1,r2)r2r1=16s2[2ρ(2ρ2τ+12(ρ)2ρ)]=13(τ14(ρ)2ρ)s2,(21)\begin{aligned} \frac{1}{6} s^{2} \nabla_{\vec r_2}^{2} P^{\sigma\sigma}_\text{cond}\left(\vec r_{1}, \vec r_{2}\right) |_{r_2 \to r_1} &= \frac{1}{6} s^{2} \left[ \nabla^2 \rho - \left( \nabla^2 \rho - 2\tau + \frac{1}{2} \frac{(\nabla \rho)^2}{\rho} \right ) \right]\\ &=\frac{1}{3} \left(\tau - \frac{1}{4} \frac{(\nabla \rho)^2}{\rho} \right ) s^{2}, \tag{21} \end{aligned}

so that the entire (spherically averaged) Taylor expansion becomes (when r2r1\vec r_2 \to \vec r_1):

Pcondσσ(r1,r2)r2r1=13[τ(r1)14(ρ(r1))2ρ(r1)]s2+.(22)\left\langle P^{\sigma\sigma}_\text{cond}\left(\vec r_{1}, \vec r_{2}\right) \right\rangle |_{\vec r_2 \to \vec r_1} = \frac{1}{3} \left[\tau (\vec r_1) - \frac{1}{4} \frac{(\nabla \rho(\vec r_1))^2}{\rho(\vec r_1)} \right] s^{2} + \cdots. \tag{22}

The Taylor expansion Eq. 22 of the spherically averaged pair probability succinctly conveys electron localization information. The smaller the probability of finding a second like-spin electron near the reference point, the more highly localized is the reference electron. Hence, electron localization is related to the “smallness” of the expression:

Dσ(r1)=τσ(r1)14(ρσ(r1))2ρσ(r1),D_{\sigma}(\vec r_{1})=\tau_{\sigma}(\vec r_{1})-\frac{1}{4} \frac{\left(\nabla \rho_{\sigma}(\vec r_{1})\right)^{2}}{\rho_{\sigma}(\vec r_{1})},

or,

Dσ(r)=τσ(r)14(ρσ(r))2ρσ(r),(23)D_{\sigma}(\vec r)=\tau_{\sigma}(\vec r)-\frac{1}{4} \frac{\left(\nabla \rho_{\sigma}(\vec r)\right)^{2}}{\rho_{\sigma}(\vec r)}, \tag{23}

where σ\sigma stands for electrons spin.

One can verify that:

  1. DσD_{\sigma} is still a probability density, hence it’s non-negative.
  2. DσD_{\sigma} vanishes in the special case of one-electron systems and hence also vanishes in multielectron systems in regions dominated by a single, localized, σ\sigma-spin orbital.
  3. the relationship between electron localization and Eq. 23 is an “inverse” relationship in the sense that high localizability is implied by small DσD_{\sigma}.
  4. DσD_{\sigma} is not bounded.

Finally, to assign physical meaning to DD and to make it a bounded object, the ELF is defined as:

ELF(r)=(1+χσ2(r))1,(11)\mathrm{ELF}(\vec r)=\left(1+\chi_{\sigma}^{2}(\vec r)\right)^{-1}, \tag{11}

where,

χσ=Dσ(r)/Dσ0(r),(12)\chi_{\sigma}=D_{\sigma}(\vec r) / D_{\sigma}^{0}(\vec r), \tag{12}

and,

Dσ0(r)=35(6π2)2/3ρσ(r)5/3,(13)D_{\sigma}^{0}(\vec r)=\frac{3}{5}\left(6 \pi^{2}\right)^{2 / 3} \rho_{\sigma}(\vec r)^{5 / 3}, \tag{13}

where Dσ0D_{\sigma}^{0} corresponds to a uniform electron gas with charge density equal to the local value of ρσ(r)\rho_{\sigma}(r).

One thing to note is that D0D_0 also depends on the local value of ρ\rho so that the dependence is canceled out in ELF and it only reflects the degrees of localization of electrons.


Understanding DD

We have shown that DD which is called the Pauli kinetic density is:

Dσ=τσ14(ρσ)2ρσ,D_{\sigma}=\tau_{\sigma}-\frac{1}{4} \frac{\left(\nabla \rho_{\sigma}\right)^{2}}{\rho_{\sigma}},

where:

τσ=iNψi2,\tau_{\sigma}=\sum_i^N |\nabla \psi_i|^2,

is twice the positively defined kinetic energy density τFermion\tau_\text{Fermion}.

Now, if we consider electrons to be bosons and no Pauli exclusion principle exist (feels really wired writing this…), we can write the wavefunctions ψi\psi_i as:

ψi=1Nρ,\psi_i = \frac{1}{\sqrt N} \sqrt \rho,

and so the positively defined kinetic energy density τ\tau is:

τBoson=12N1Nρ2=12N1Nρ2=12(12ρ1/2ρ)2=(ρ)28ρ.(B1)\begin{aligned} \tau_{\text{Boson}} &=\frac{1}{2} \sum^N \left| \nabla \frac{1}{\sqrt N} \sqrt \rho \right|^2\\ &=\frac{1}{2} \sum^N \frac{1}{N} |\nabla \sqrt \rho|^2\\ &=\frac{1}{2} \left( \frac{1}{2} \rho^{-1/2} \cdot \nabla \rho \right) ^2\\ &=\frac{(\nabla \rho)^2}{8 \rho}. \tag{B1} \end{aligned}

Because this is the Bosonic version of the positively defined kinetic energy density (some times also called the von-Weizacker kinetic energy density), it’s the lower bound of the Fermion version:

τFermionτBoson,\tau_{\text{Fermion}} \geq \tau_{\text{Boson}},

and the difference between them (to be precisely, twice the difference) is the so-called Pauli kinetic energy DD:

D=2τFermion2τBosonD = 2\cdot \tau_{\text{Fermion}} - 2\cdot \tau_{\text{Boson}}

Difference between τ\tau and TT

The kinetic energy density of the system TT is defined as:

T=12iψi2ψiT = -\frac{1}{2}\sum_i \psi_i^* \nabla^2 \psi_i

Now, let’s consider re-writing TT as :

T=12iψi2ψi=12iψψi12iψψi12iψi2ψi=12iψψi[12iψψi14iψi2ψi14iψi2ψi]=12iψψi14[2iψiψi]=12iψψi142ρ=12iψi2142ρ.\begin{aligned} T &= -\frac{1}{2} \sum_i \psi_i^* \nabla^2 \psi_i \\ &=\frac{1}{2} \sum_i \nabla \psi^* \nabla \psi_i - \frac{1}{2} \sum_i \nabla \psi^* \nabla \psi_i -\frac{1}{2} \sum_i \psi_i^* \nabla^2 \psi_i \\ &=\frac{1}{2} \sum_i \nabla \psi^* \nabla \psi_i - \left[ \frac{1}{2} \sum_i \nabla \psi^* \nabla \psi_i -\frac{1}{4} \sum_i \psi_i^* \nabla^2 \psi_i - \frac{1}{4} \sum_i \psi_i \nabla^2 \psi_i^* \right] \\ &=\frac{1}{2} \sum_i \nabla \psi^* \nabla \psi_i - \frac{1}{4} \left[ \nabla^2 \sum_i \psi_i^* \psi_i \right] \\ &=\frac{1}{2} \sum_i \nabla \psi^* \nabla \psi_i - \frac{1}{4} \nabla^2 \rho \\ &=\frac{1}{2} \sum_i |\nabla \psi_i|^2 - \frac{1}{4} \nabla^2 \rho. \\ \end{aligned}

The first term is what we called “positively defined kinetic energy” and we have an additional second term.

Actually, if we count the second term in to Eq. 23 we see that it cancels out with the Bosonic part,

D=2TFermion2TBoson=iψi2122ρ[14(ρσ)2ρσ122ρ],\begin{aligned} D&=2\cdot T_{\text{Fermion}}-2\cdot T_{\text{Boson}}\\ &= \sum_i |\nabla \psi_i|^2 - \frac{1}{2} \nabla^2 \rho - \left[ \frac{1}{4} \frac{\left(\nabla \rho_{\sigma}\right)^{2}}{\rho_{\sigma}} - - \frac{1}{2} \nabla^2 \rho \right], \end{aligned}

where we have used Eq. B1 to get TBosonT_{\text{Boson}}.


Free electron gas D0D_0

Assuming periodic boundry condition, in 3D, the Schordinger Equation has solution:

ψk(r)=eikr,(A1)\psi_{\vec k}(\vec r) = e^{i \vec k \vec r}, \tag{A1}

where k\vec k takes the following values:

kx=2πLnx,ky=2πLny,kz=2πLnz,nx,ny,nz=0,±1,±2,.(A2)\begin{aligned} k_x =\frac{2\pi}{L} n_x, \quad k_y &=\frac{2\pi}{L} n_y, \quad k_z =\frac{2\pi}{L} n_z, \\ n_x, n_y, n_z &= 0, \pm 1,\pm 2, \cdots. \tag{A2} \end{aligned}

The dispersion relation is:

ε=22mk2,(A3)\varepsilon=\frac{\hbar^2}{2m} \cdot \vec{k}^2, \tag{A3}

or in atomic unit:

ε=12k2.(A4)\varepsilon=\frac{1}{2} \vec{k}^2. \tag{A4}

Since we are considering Fermi gas, each state (only differ by their kk value) can only take one electron (for one spin channel). Starting from the lowest energy state (k=0\vec k=0) the highest filled state has the Fermi vector kF\vec k_F.

From Eq. A2, we see that each kpoint takes a volume of (2πL)3(\frac{2\pi}{L})^3. The volume of occupied “k-sphere” is 0kFdk=43πkF3\int_0^{k_F} dk = \frac{4}{3} \pi k_F^3, If we only consider one spin channel, the total number of allowed occupied states is:

N=43πkF3(2πL)3=43πkF3(2π)3V,(A5)N = \frac{\frac{4}{3}\pi k_F^3}{(\frac{2\pi}{L})^3}= \frac{\frac{4}{3}\pi k_F^3}{\frac{(2\pi)^3}{V}}, \tag{A5}

where V=L3V=L^3 is the volume of the unitcell. Note that the number of occupied states equals to the number of electrons in that spin channel N=NeN=N_e.

From Eq. A4 we can calculate the Fermi vector kFk_F:

kF=(6π2NeV)13.(A6)k_F = \left( 6 \pi^2 \frac{N_e}{V} \right)^{\frac{1}{3}}. \tag{A6}

To calculate the average kinetic energy per electron(or total energy per electron since there are no potential energy term in the free electron SE) , we need to sum up energy of each occupied state and then devided that by the number of electrons in the system,

T=1Nekεk=(0kFdk(2π)3/V)11(2π)3/V0kF12k2dk=(4π3kF3)12π5kF5=1235(6π2NeV)23.(A7)\begin{aligned} T&=\frac{1}{N_e} \sum_k \varepsilon_k \\ &=\left(\frac{\int_0^{\vec k_F} d\vec k}{(2\pi)^3/V}\right)^{-1} \frac{1}{(2\pi)^3/V} \int_0^{\vec k_F} \frac{1}{2}k^2 d\vec k\\ &=\left( \frac{4\pi}{3} k_F^3 \right)^{-1} \cdot \frac{2\pi}{5} k_F^5\\ &=\frac{1}{2} \cdot \frac{3}{5} \left( 6 \pi^2 \frac{N_e}{V} \right)^{\frac{2}{3}}. \tag{A7} \end{aligned}

If we define the local charge density as ρ=Ne/V\rho=N_e/V, Eq. A7 becomes:

T=1235(6π2)23(ρ)23.T = \frac{1}{2} \cdot \frac{3}{5} \left( 6 \pi^2 \right)^{\frac{2}{3}} \left( \rho \right)^{\frac{2}{3}}.

Since TT is the kinetic energy per electron, the kinetic energy at specific point can be calculated by:

Tρ(r)=1235(6π2)23(ρ)53.(A8)T \rho(\vec r) = \frac{1}{2} \cdot \frac{3}{5} \left( 6 \pi^2 \right)^{\frac{2}{3}} \left( \rho \right)^{\frac{5}{3}}. \tag{A8}

Finally, since:

τσ=ψi2\tau_{\sigma} =|\nabla \psi_i|^2

is actually twice of the kinetic energy density, we need to double the value we just calculated to get τσ\tau_{\sigma}:

τσ=35(6π2)23(ρ)53(A9)\tau_{\sigma} = \frac{3}{5} \left( 6 \pi^2 \right)^{\frac{2}{3}} \left( \rho \right)^{\frac{5}{3}} \tag{A9}


Author | Chengcheng Xiao

Currently a postdoctoral research associate at Imperial College London. Predicting electron behaviour since 2016.