Side-quest πŸ‰

Math 

Problem

Find the area of the shaded part.


At first, I tried to solve this using simple geometry without trigonometry, but eventually gave up.


Solution

Then, brining the big gun:

  1. Using integration:

    • First, define a coordinate system:

    Alt text

    • Then, write the function describing the blue circle and the red arc.
      • Blue circle: x2+(y+5βˆ—2)2=100x^2+(y+5*\sqrt{2})^2=100
      • Red arc: x2+(y)2=25x^2+(y)^2=25
    • The coordinate of two crossing point can be found:
      • Point A: [βˆ’5722,522][-\frac{5\sqrt{\frac{7}{2}}}{2},\frac{5}{2\sqrt{2}}]
      • Point B: [5722,522][\frac{5\sqrt{\frac{7}{2}}}{2},\frac{5}{2\sqrt{2}}]
    • Using the xx corrdinate of point A and B as lower and upper limit, the integration could be written as:

      Areatotal2=∫BA[25βˆ’x2βˆ’(100βˆ’x2βˆ’52)]dx\frac{Area_{total}}{2}=\int^A_B [\sqrt{25-x^2}-(\sqrt{100-x^2}-5\sqrt{2})] dx
    • And the total area:

      Areatotal=2βˆ—252[7βˆ’8arcsin⁑(724)+2arcsin⁑(7)]Area_{total}=2*\frac{\sqrt{25}}{2}[\sqrt{7}-8\arcsin{(\frac{\sqrt{\frac{7}{2}}}{4})}+2\arcsin{(\sqrt{7})}]

      or: 29.2763cm229.2763 cm^2

  2. Using trigonometry:

    • Auxiliary lines can be usefull:

    Alt text

    • We know:

      AC=CB=10AC=CB=10 AD=DB=5AD=DB=5 CD=52CD=5\sqrt{2}
    • Using Cosin Law, we get the angle of ∠ACD\angle ACD:

      ∠ACD=arccos⁑AC2+CD2βˆ’AD22ACβˆ—CD\angle ACD=\arccos{\frac{AC^2+CD^2-AD^2}{2AC*CD}}
    • Hence the area of sector ACBFA:

      AreaACBFA=2βˆ—βˆ ACD2ππ102Area_{ACBFA}=\frac{2*{\angle ACD}}{2 \pi } \pi 10^2
    • The area of the triangle ACBA:

      AreaACBA=12ACβˆ—CBβˆ—sin⁑(2βˆ—βˆ ACD)Area_{ACBA}=\frac{1}{2} \text{AC}*\text{CB}*\sin (2*\text{$\angle $ACD})
    • Area ABFA can be obtained:

      AreaABFA=AreaACBFAβˆ’AreaACBAArea_{ABFA}=Area_{ACBFA}-Area_{ACBA}
    • Now we perform similar procedure to obtain area of ABEA:

      ∠ADC=arccos⁑(AD2+DC2βˆ’AC22ADβˆ—DC)\text{$\angle $ADC}=\arccos\left(\frac{\text{AD}^2+\text{DC}^2-\text{AC}^2}{2 \text{AD}*\text{DC}}\right) ∠ADB=2(Ο€βˆ’βˆ ADC)\text{$\angle $ADB}=2 (\pi -\text{$\angle $ADC}) AreaADBEA=Ο€βˆ—52βˆ—βˆ ADB2Ο€Area_{ADBEA}=\frac{\pi* 5^2 * \text{$\angle $ADB}}{2 \pi } AreaADBA=12AD2sin⁑(∠ADB)Area_{ADBA}=\frac{1}{2} \text{AD}^2 \sin (\text{$\angle $ADB}) AreaABEA=AreaADBEAβˆ’AreaADBAArea_{ABEA}=Area_{ADBEA}-Area_{ADBA} AreaAFBEA=2βˆ—AreaABEAβˆ’AreaABFAArea_{AFBEA}=2*Area_{ABEA}-Area_{ABFA}
    • Result:

      29.2763cm229.2763 cm^2

It is intriguing that this problem cannot be simply solved without trigonometry.

I’ve wrote down the whole process in Wolfram Mathematica for download.



Author | Chengcheng Xiao

Currently a postdoctoral research associate at Imperial College London. Predicting electron behaviour since 2016.