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Tutorial 6: Time-Dependent DFT

 Version: all versions  Tim Zuehlsdorf;

TDDFT in ONETEP

This tutorial aims at showing how to run a simple linear-response TDDFT calculation in ONETEP.

Linear-response TDDFT is the main method of choice when computing optical excitations for large

system sizes. In this formalism, excitation energies are directly obtained as the solutions to an effective

eigenvalue equation. The approach implemented in ONETEP can be made to scale fully linearly with

systems size, allowing for the computation of excitations in systems containing thousands of atoms.

In linear-response TDDFT, an excitation is expressed through a transition vector that can be written in

the basis of all possible Kohn-Sham transtions from occupied to unoccupied states. Thus unlike in

standard ground state DFT, where a good representation of the occupied KohnSham states is sufficient

to obtain accurate results, in a TDDFT calculation an equally good representation of a subset of the

unoccupied Kohn-Sham space is vital. Since the ONETEP support functions are optimised in situ to

ideally represent the occupied manifold, they generally provide a relatively poor description of the

unoccupied manifold, making them insufficient for describing excitations in a linear-response

framework. In practice, this problem is removed by optimising a second set of support functions to

ideally span a low energy subset of the conduction space in a post-processing step after a

Singlepoint  calculation. Together, the two sets of support functions form an ideal representation of

any given low energy excitation, thus enabling efficient iand accurate TDDFT calculations in very large

systems.

Setting up a TDDFT calculation in ONETEP

A TDDFT calculation in ONETEP thus proceeds in three separate steps:

A standard ground state calculation using Task: Singlepoint . The code will write out .dkn  and

.tightbox_ngwfs  files containing the valence density kernel and the NGWF support functions.

A conduction optimisation using Task: Cond . The code will read in the converged .dkn  and

.tightbox_ngwfs  files from the ground-state optimisation and perform a postprocessing

conduction optimisation  of some low energy part of the conduction space manifold. It will write

out .dkn_cond  and .tightbox_ngwfs_cond  files containing an effective density kernel for the low

energy conduction space, as well as the NGWF support functions for the conduction space.

A TDDFT calculation using Task: Lr_tddft . The code will read in the density kernels and support

functions for both the ground state and the conduction space calculations and then calculate the

lowest n excitations of the system, where n is determined by the keyword lr_tddft_num_states .

In practice, it is possible to string these tasks together using Task: Singlepoint Cond Lr_tddft  in an

input file that lists appropriate keywords for all three calculation types. The tasks will be performed one

after another, without the user having to restart the calculation in between.
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An NN-substituted nanoribbon

We turn to a simple example of an excited state calculation in a periodic system, namely that of an

infinitely long graphene nanoribbon with two nitrogen substitutions. We will aim to compute excited

states that are associated with the substitution and that are thus relatively localised in character. In a

first step, we aim to build an input file for a pristine graphene nanoribbon in periodic boundary

conditions. A primitive unit cell for the nanoribbon in question can be found below:

To generate an appropriate input file, copy the above primitive unit cell block into a new input file called

ribbon.dat . ONETEP does not make use of any k-point sampling and all calculations are effectively

done at the -point. Therefore, in order to accurately simulate periodic structures it is necessary to

simulate supercells rather than primitive cells as would be done in standard plane wave DFT codes. An

appropriate supercell from the above primitive cell can be created by repeating the primitive cell 7 times

along the z-axis, translating the z-coordinates of the atoms by the lattice vector of the primitive unit cell.

The resulting supercell should contain 48 atoms in total.

Now create an appropriate %block lattice_cart  for the system. The length of the supercell is

specified by the length of your primitive cell and the number of repeats of that cell. However, the size of

the unit cell in the x and y direction is free to specify by the user. Since the ONETEP method uses

periodic boundary conditions in all three directions, it is necessary to include enough vacuum in the x

and y direction of the simulation cell to prevent it from interacting with its periodic neighbours. In this

case, about 20 a0 of vacuum between any atoms of different periodic images is a reasonable length.

Using the lessons learnt from previous tutorials add a %block species  and %block species_pot

block to your input file. Choose an appropriate NGWF radius (try 8 a0) and kinetic energy cutoff (around

600 eV) for your calculation. When choosing the NGWF radius, note that ONETEP will not allow you to

pick an NGWF diameter that is larger than the dimensions of your simulation cell, as this would cause

an NGWF to interact with its periodic image. Finally, perform a singlepoint calculation of the system.

You can add a keyword do_properties: T  to the input file. This will trigger the code to perform a

properties calculation, write out a file .val_bands  containing all Kohn-Sham energies and write cube

files of selected Kohn-Sham states around the band gap.

Conduction optimisation

Once the ground state calculation is finished, it is necessary to perform a conduction optimisation. First,

set Task: Cond  and add a new block %block species_cond  to the input file. This block is made up in

an identical way as %block species  and specifies the number of support functions and their radius in

the conduction optimisation. In many practical examples, it is often advisable to choose a larger NGWF

radius for the conduction optimisation than for the ground state calculation, especially if one is
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 %block positions_abs

 C 10.90 10.0 0.000

 C 13.58 10.0 0.000

 H 7.50 10.0 2.327

 C 9.56 10.0 2.327

 C 14.93 10.0 2.327

 H 16.99 10.0 2.327

 %endblock positions_abs

Γ
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interested in lightly bound states, as unoccupied Kohn-Sham states tend to be more diffuse than

occupied ones (try 10 a0 for example).

A second keyword required for the conduction optimisation is the number of conduction states that

should be explicitly optimised ( cond_num_states ). It is normally advisable to optimise only well-bound

states as unbound states are difficult to describe with localised orbitals. In order to do so, have a look at

the file .val_bands  and count the number of Kohn-Sham states with negative energy that are

unoccupied. Note that cond_num_states  expects the number of electrons to be optimised as an input,

thus in order to optimise the five lowest unoccupied Kohn-Sham states in a spin-degenerate system,

one should choose cond_num_states: 10 .

Once you have run the calculation, have a look at the output. You will find that ONETEP has generated

a number of files such as cube files of unoccupied Kohn-Sham states expressed in terms of the

optimised conduction NGWFs.

TDDFT calculation

We can now perform a full ONETEP TDDFT calculation of the system at hand. To do so, set Task: 

Lr_tddft  in the input file. Furthermore, add the keywords lr_tddft_num_states: 6 ,

lr_tddft_write_densities: T  and lr_tddft_analysis: T . The code will compute the lowest 8

singlet excitations of the system and generate cube files for the electron, hole and transition density for

each excitation that can be visualised. Furthermore lr_tddft_analysis: T  triggers a breakdown of

the converged TDDFT eigenvectors into Kohn-Sham transitions, allowing you to study which are the

dominant transitions for each excitations.

Once you have performed the TDDFT calculation, look at the output file. You will see that the excitation

energies and oscillator strengths for each of the excitations are printed out, as well as a detailed

breakdown of excitation energies into Kohn-Sham transtions. Have a look at some of the cube files

produced. Where are the excitations located in the system?

Nitrogen substitution

We can now move on from the case of the pristine nanoribbon to one with two nitrogen substitutions.

For this purpose, copy the input file ribbon.dat  to a new file ribbon_NN.dat . In that file, remove two

C-H from the %block positions_abs  that are opposite to each other in the ribbon, and replace them

by two N at the same positions where the C were located.
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Left: Pristine nanoribbon. Right: Nanoribbon with two carbons and two
hydrogens substituted for two nitrogens.

Note that in order to run the calculation, you will have to add the nitrogen species to the %block 

species_pot , %block species  and %block species_cond  blocks. Change the task to Task: 

Singlepoint Cond Lr_tddft . The code will run a ground state and conduction optimisation, followed

by a TDDFT calculation for the full system. Have a look at the output. How do the excited states change

due to the nitrogen substitutions? Where is each excited state located within the system?

Additional tasks

Substituting nitrogen atoms in the same place as carbon atoms does not yield a relaxed ground state

structure, as the N-C bond is not of the same length as the C-C bond. Thus in order to obtain more

realistic results for the substituted system, perform a geometry optimisation (see tutorial 4), followed by

a ground state, conduction and TDDFT calculation of the full system. How do the results change?

Furthermore, create a system where the nitrogen atoms are not substituted at exactly opposite

positions in the structure, but an asymmetry along the z-axis is introduced. How does the character of

the low energy excitations change?

Input files

All the files needed for the simulation can be downloaded from:

ribbon_pristine.dat

ribbon_pristine_NN.dat

ribbon_pristine.out

file:///files/ribbon_pristine.dat
file:///files/ribbon_pristine_NN.dat
file:///files/ribbon_pristine.out
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ribbon_pristine_NN.out

carbon.recpot

hydrogen.recpot

nitrogen.recpot

file:///files/ribbon_pristine_NN.out
file:///files/carbon.recpot
file:///files/hydrogen.recpot
file:///files/nitrogen.recpot



