
ONETEP Tutorials
7.0.0

Tutorial 13

Page 2 of 7

Tutorial 13: ASE ONETEP interface

 Version: all versions Tom Demeyere

Preamble & Download links

Here is the tutorial for the ONETEP interface in ASE. It is a work in progress, but if you wish to give it a

try, please find the two files:

learn_ase_in_y_minutes.py

onetep_interface.py

The first file is a general tutorial for people who are not used to ASE. The second file is a small file that

explains how to use the ONETEP interface with ASE.

Below is the documentation for the ONETEP interface in ASE, as plan to be included in the ASE

documentation.

Introduction

ONETEP is a linear-scaling density functional theory code which exploit the near-sightness of the

electronic density. It uses a set of atom-centered local orbitals (denoted NGWFs) which are optimised

in situ to enable calculations with a minimal number of orbitals.

This interface makes it possible to use ONETEP as a calculator in ASE. You need to have a copy of the

ONETEP code (and an appropriate license) to use this interface.

Environment variables

The environment variable ASE_ONETEP_COMMAND must hold the command to invoke the ONETEP

calculation. The variable must be a string with a link to the ONETEP binary, and any other specific

settings required for your environment (srun, mpirun, ...)

You can setup this environment variable in your shell configuration file:

Or within python itself:

ASE will automatically redirect stdout and stderr to the appropriate files, namely "

LABEL.err" where label is the name used for your ONETEP calculations

1 $ export ASE_ONETEP_COMMAND="export OMP_NUM_THREADS=4; mpirun -n 6

~/onetep/bin/onetep.arch"

1 >>> environ["ASE_ONETEP_COMMAND"]="export OMP_NUM_THREADS=4; mpirun -n 6

~/onetep/bin/onetep.arch"

LABEL. out′′and′′

mailto:
file:///files/learn_ase_in_y_minutes.py
file:///files/onetep_interface.py
http://www.onetep.org/
http://www.onetep.org/

Page 3 of 7

Pseudopotentials

ONETEP accepts PAW datasets in the abinit format, and NCP pseudpotentials with formats USP and

recpot. Support has recently been added for the upf format, for both PAW and NCPP potentials.

Pseudopotentials are passed directly to the Onetep calculator as a dictionary definition. If no

pseudopotentials are passed ASE will try to guess the files based on the element used and the

pseudo_path variable.

For ASE to correctly guess the pseudopotentials, it is best to use a pseudo_path that contains only one

pseudopotential file for each element.

ONETEP Calculator

Simple calculations can be setup calling the Onetep calculator without any parameters, in this case

ONETEP's default parameters will be used. For more complex cases using the keywords parameters is

necessary. The 'keywords' parameters is a dictionary, in which each of the keys is a string that should

be a ONETEP keyword, and the corresponding value is what you want to set that keyword to in the

input.

Examples

Here is an example python script which sets up a calculation on a water molecule:

Here is a more complex example, this time setting up a Pt13 cluster and running a geometry

optimisation on 64 cores:

1

2

3

4

5

6

 # Explicitly providing each path

 calc = Onetep(pseudopotentials = {'H': '/path/to/pseudos/H.usp', 'O':

'/path/to/pseudos/O.usp'})

 # Using pseudo_path

 calc = Onetep(pseudo_path = '/path/to/pseudos', pseudopotentials = {'H':

'H.usp', 'O': 'O.usp'})

 # ASE will try to guess them

 calc = Onetep(pseudo_path = '/path/to/pseudos')

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

 from ase.build import molecule

 from ase.calculators.onetep import Onetep

 from os import environ

 # water molecule from ASE database, centered in a ~ 24 Å box

 wat = molecule('H2O')

 wat.center(12)

 environ["ASE_ONETEP_COMMAND"]="export OMP_NUM_THREADS=8; mpirun -n 2

~/onetep/bin/onetep.arch"

 # Ouput will be in "water.out"

 calc = Onetep(label = 'water', xc = 'PBE', paw = True, pseudo_path =

'/path/to/pseudos')

 wat.calc = calc

 wat.get_potential_energy()

Page 4 of 7

Here is an example of setting up an EELS and LDOS calculation on an N-substituted graphene sheet,

demonstrating several more advanced functionalities (eg tags, species groups, and overrides to

pseudopotentials and atomic solver strings):

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

 from os import environ

 import numpy as np

 from ase.build import molecule

 from ase.calculators.onetep import Onetep

 from ase.cluster import Octahedron

 from ase.optimize.sciopt import SciPyFminBFGS

 # Pt13 from ase.cluster

 nano = Octahedron('Pt', 3, 1)

 nano.set_cell(np.eye(3)*12)

 nano.center()

 label = 'pt13'

 environ["ASE_ONETEP_COMMAND"]="export OMP_NUM_THREADS=8; mpirun -n 8

~/onetep/bin/onetep.arch"

 # ONETEP default are atomic units, one can specify 'cutoff_energy' : '600

eV' if needed.

 keywords = {

 'xc' : 'rpbe',

 'do_properties' : True,

 'cutoff_energy' : 35,

 'output_detail': 'verbose',

 'elec_energy_tol': 1.0e-5/len(atoms),

 }

 # Ouput will be in "pt13.out",

 # append = True will not overwrite file at each step

 calc = Onetep(

 label = label,

 edft = True,

 append = True,

 pseudo_path = '/path/to/pseudos',

 keywords = keywords)

 nanoparticle.calc = calc

 opt = SciPyFminBFGS(atoms = nano, trajectory = label + ".traj", logfile =

label + ".log")

 opt.run(fmax=0.01)

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

Page 5 of 7

1415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263

Page 6 of 7

Quickly restart with solvation effect using the soft sphere model

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

 from ase.io import read

 from ase.io.onetep import get_onetep_keywords

 # Read from the previous run...

 optimized_sheet = read("N_doped_graphene_001.out")

 # Function to retrieve keywords dict from input file...

 keywords = get_onetep_keywords('N_doped_graphene_001.dat')

 # We add solvation keywords

 keywords.update(

 {

 'is_implicit_solvent': True,

 'is_include_apolar': True,

 'is_smeared_ion_rep': True,

 'is_dielectric_model': 'fix_cavity',

 'is_dielectric_function' : 'soft_sphere'

 }

)

 optimized_sheet.calc = Onetep(...)

 ...

